SUmmary
From an enzyme kinetic study using rat liver microsomes, α-tocopherol has been suggested to accelerate the other vitamin E catabolism by stimulating vitamin E ω-hydroxylation, the late limiting reaction of the vitamin E catabolic pathway. To test the effect of α-tocopherol on catabolism of the other vitamin E isoforms in vivo, we determined whether α-tocopherol accelerates depletion of γ-tocopherol and tocotrienol and excretion of their metabolites in rats. Male Wistar rats were fed a γ-tocopherol-rich diet for 6 weeks followed by a γ-tocopherol-free diet with or without α-tocopherol for 7 days. Intake of γ-tocopherol-free diets lowered γ-tocopherol concentrations in serum, liver, adrenal gland, small intestine, and heart, but there was no effect of dietary α-tocopherol on γ-tocopherol concentrations. The level of urinary excretion of γ-tocopherol metabolite was not affected by dietary α-tocopherol. Next, the effect of α-tocopherol on tocotrienol depletion was examined using rats fed a tocotrienol-rich diet for 6 weeks. Subsequent intake of a tocotrienol-free diet with or without α-tocopherol for 7 days depleted concentrations of α- and γ-tocotrienol in serum and tissues, which was accompanied by a decrease in the excretion of γ-tocotrienol metabolite. However, neither the tocotrienol concentration nor γ-tocotrienol metabolite excretion was affected by dietary α-tocopherol. These data showed that dietary α-tocopherol did not accelerate the depletion of γ-tocopherol andtocotrienol and their metabolite excretions, suggesting that the positive effect of α-tocopherol on vitamin E ω-hydroxylase is not sufficient to affect the other isoform concentrations in tissues.