Anti-proliferative effects of gamma-tocotrienol on mammary tumour cells are associated with suppression of cell cycle progression

Samant GV, Wali VB, Sylvester PW.

Cell Prolif. 2010 Feb;43(1):77-83

Objectives: Previous studies have shown that gamma-tocotrienol induces potent anti-proliferative effects on +SA mammary tumour cells in culture; here, investigations have been conducted to determine its effects on intracellular signalling proteins involved in regulating cell cycle progression.

Materials And Methods: +SA cells were maintained in mitogen-free defined media containing 0 or 4 micromgamma-tocotrienol, for 48 h to synchronize cell cycle in G(0) phase, and then they were exposed to 100 ng/ml EGF to initiate cell cycle progression. Whole cell lysates were collected at various time points from each treatment group and were prepared for Western blot analysis.

Results And Conclusions: Treatment with 4 micromgamma-tocotrienol significantly inhibited +SA cell proliferation over a 4-day culture period. Moreover, this treatment resulted in a relatively large reduction in cyclin D1, cyclin dependent kinase (CDK)4, CDK2 and CDK6 levels, between 4 and 24 h after EGF exposure. Tocotrienol treatment also resulted in a relatively large increase in CDK inhibitor (CKI) p27, prior to and after EGF exposure, but had little effect on levels of CKIs, p21 and p15. Tocotrienol treatment also induced a large relative reduction in retinoblastoma (Rb) protein phosphorylation at ser780 and ser807/811. These findings strongly suggest that anti-proliferative effects of gamma-tocotrienol are associated with reduction in cell cycle progression from G(1) to S, as evidenced by increased p27 levels, and a corresponding decrease in cyclin D1, CDK2, CDK4, CDK6 and phosphorylated Rb levels.

Endoplasmic reticulum stress mediates gamma-tocotrienol-induced apoptosis in mammary tumor cells

Wali VB, Bachawal SV, Sylvester PW.

Apoptosis. 2009 Nov;14(11):1366-77.

Gamma-Tocotrienol, a member of the vitamin E family of compounds, induces apoptosis in a variety of cancer cell types. However, previous studies have clearly demonstrated that gamma-tocotrienol-induced apoptosis in neoplastic mouse +SA mammary epithelial cells is not mediated through mitochondrial stress or death receptor apoptotic signaling. Therefore, studies were conducted to determine the role of endoplasmic reticulum (ER) stress in mediating gamma-tocotrienol-induced apoptosis in +SA mammary tumor cells. Treatment with 15-40 microM gamma-tocotrienol induced +SA cell death in a dose-responsive manner, and these effects were associated with a corresponding increase in poly (ADP-ribose) polymerase (PARP)-cleavage and activation of protein kinase-like endoplasmic reticulum kinase/eukaryotic translational initiation factor/activating transcription factor 4 (PERK/eIF2alpha/ATF-4) pathway, a marker of ER stress response. These treatments also caused a large increase in C/EBP homologous protein (CHOP) levels, a key component of ER stress mediated apoptosis that increases expression of tribbles 3 (TRB3). Knockdown of CHOP by specific siRNAs attenuated gamma-tocotrienol-induced PARP-cleavage, CHOP and TRB3 expression. gamma-Tocotrienol treatment also reduced full-length caspase-12 levels, an indication of caspase-12 cleavage and activation. Intracellular levels of 3-hydroxy-3-methylglutaryl-coenzyme A (HMGCoA) reductase, an ER-transmembrane enzyme catalyzing the synthesis of mevalonate, decreased following gamma-tocotrienol treatment, but combined treatment with mevalonate did not reverse gamma-tocotrienol-induced apoptosis, suggesting that a decrease in HMGCoA reductase activity is not required for gamma-tocotrienol induced apoptosis. These results demonstrate that ER stress apoptotic signaling is associated with gamma-tocotrienol-induced apoptosis in +SA mammary tumor cells.

A novel mechanism of natural vitamin E tocotrienol activity: Involvement of ERbeta signal transduction

Comitato R, Nesaretnam K, Leoni G, Ambra R, Canali R, Bolli A, Marino M, Virgili F.

Am J Physiol Endocrinol Metab. 2009 Aug;297(2):E427-37.

Vitamin E is a generic term used to indicate all tocopherol (TOC) and tocotrienol (TT) derivates. In the last few years, several papers have shown that a TT-rich fraction (TTRF) extracted from palm oil inhibits proliferation and induces apoptosis in a large number of cancer cells. However, the molecular mechanism(s) involved in TT action is still unclear. In the present study, we proposed for the first time a novel mechanism for TT activity that involves estrogen receptor (ER) signaling. In silico simulations and in vitro binding analyses indicated a high affinity of TTs for ERbeta but not for ERalpha. In addition, in ERbeta-containing MDA-MB-231 breast cancer cells, we demonstrated that TTs increase the ERbeta translocation into the nucleus, which in turn activates estrogen-responsive genes (MIC-1, EGR-1 and cathepsin D), as demonstrated by cell preincubation with the ER inhibitor ICI-182,780. Finally, we observed that TT treatment is associated with alteration of cell morphology, DNA fragmentation, and caspase-3 activation. Altogether, these experiments elucidated the molecular mechanism underling gamma- and delta-TT effects.

Read Full Article Here

Combined treatment of gamma-tocotrienol with statins induce mammary tumor cell cycle arrest in G1

Wali VB, Bachawal SV, Sylvester PW.

Exp Biol Med (Maywood). 2009 Jun;234(6):639-50. Epub 2009 Apr 9.

Statins and gamma-tocotrienol (a rare isoform of vitamin E) both inhibit 3-hydroxy-3-methylglutaryl-coenzyme A (HMGCoA) reductase activity and display anticancer activity. However, clinical application of statins has been limited by high dose toxicity. Previous studies showed that combinedstatin and gamma-tocotrienol treatment synergistically inhibits growth of highly malignant +SA mammary epithelial cells in culture. To investigate the mechanism mediating this growth inhibition, studies were conducted to determine the effect of combination low dose gamma-tocotrienol and statintreatment on +SA mammary tumor cell cycle progression. Treatment with 0.25 microM simvastatin, lovastatin, mevastatin, 10 microM pravastatin or 2.0 microM gamma-tocotrienol alone had no effect, while combined treatment of individual statins with gamma-tocotrienol significantly inhibited +SAcell proliferation during the 4-day culture period. Flow cytometric analysis demonstrated that combined treatment induced cell cycle arrest in G1. Additional studies showed that treatment with 0.25 microM simvastatin or 2 microM gamma-tocotrienol alone had no effect on the relative intracellular levels of cyclin D1, CDK2, CDK4 and CDK6, but combined treatment caused a large reduction in cyclin D1 and CDK2 levels. Combined treatments also caused a relatively large increase in p27, but had no effect on p21 and p15 levels, and resulted in a large reduction in retinoblastoma (Rb) protein phosphorylation at ser780 and ser807/811. Similar effects were observed following combined treatment of gamma-tocotrienol with low doses of lovastatin, mevastatin and pravastatin. These findings demonstrate that combination low dose statin and gamma-tocotrienol treatment inducedmammary tumor cell cycle arrest at G1, resulting from an increase in p27 expression, and a corresponding decrease in cyclin D1, CDK2, and hypophosphorylation of Rb protein. These findings suggest that combined treatment of statins with gamma-tocotrienol may provide significant health benefits in the treatment of breast cancer in women, while avoiding myotoxicity associated with high dose statin monotherapy.

Read Full Article Here

Design and QSAR study of analogs of gamma-tocotrienol with enhanced antiproliferative activity against human breast cancer cells

Nikolic K, Agababa D.

J Mol Graph Model. 2009 Apr;27(7):777-83. Epub 2008 Nov 27.

Quantitative structure-activity relationships (QSAR) study has been performed for two sets of the antitumor drugs against human breast cancer MCF-7 cell lines, alpha-tocopherol and cholesterol derivatives. Constitutional, geometrical, physico-chemical and electronic descriptors (using the density functional theory, B3LYP/6-31G (d,p) basis set) were computed and analyzed. The most relevant of these descriptors were grouped and multiple linear regressions have been carried out. Optimal QSAR models with three and four variables, R(2)>0.95 and cross-validation parameter q(pre)(2)>0.88, were selected. Based on the QSAR study, novel vitamin-E derivatives (compounds D-1 and D-2) were designed and their antiproliferative activities were evaluated using the proposed regression models. Calculated antiproliferative activities of the designed compounds, IC(50) (D-1): 3.09 microM and IC(50) (D-2): 3.54 microM, were significantly stronger than anticancer effect of the other analyzed compounds IC(50): 4-1461 microM.

Suppression of cell proliferation and gene expression by combinatorial synergy of EGCG, resveratrol and gamma-tocotrienol in estrogen receptor-positive MCF-7 breast cancer cells

Hsieh TC, Wu JM.

Int J Oncol. 2008 Oct;33(4):851-9.

Numerous dietary phytochemicals have shown anti-breast carcinogenic activities when tested in vitro; however, in most cases, the demonstrated efficacy of individual phytochemicals requires doses not readily achievable in vivo. Therefore, whether diets might exert translational promises and benefits in clinical settings and prevention of breast cancer remain unclear. Since cancer cells are endowed with complex, redundant, converging and diverging pathways spanning both the genetic and metabolic networks that are not merely replicates of those in normal cells, it is of interest to test whether a multicomponent approach involving lower, physiologically relevant doses of natural dietary agents may be developed as a chemopreventive strategy for breast cancer. Herein, we investigated, using the estrogen receptor-positive MCF-7 breast cancer cells as a model, whether the combination of epigallocatechin gallate (EGCG), resveratrol and gamma-tocotrienol at suboptimal doses elicits synergism in suppressing cell proliferation, modulating gene expression, and increasing antioxidant activity, as compared to each of the three phytochemicals added alone. The results showed that there was a approximately 33, 50 and 58% inhibition of cell proliferation by > or =50 microM EGCG, > or =25 microM resveratrol and > or =10 microM gamma-tocotrienol, respectively, added as a single agent. When a suboptimal dose (10 microM) of each phytochemical was used, a significant additive effect in suppression of cell proliferation was observed with the combination of resveratrol and gamma-tocotrienol whereas the three phytochemicals added together did not produce more pronounced inhibition of cell proliferation. A significant additive effect in reducing cyclin D1 and bcl-2 expression was found when gamma-tocotrienol was added with either EGCG or resveratrol. Functional synergism among the three phytochemicals was only observed in the induction of quinone reductase NQO1. These results suggest that diet-based protection against breast cancer may partly derive from synergy amongst dietary phytochemicals directed against specific molecular targets in responsive breast cancer cells, and provide support for the feasibility of the development of a diet-based combinatorial approach in the prevention and treatment of breast cancer.

Growth inhibition of human MDA-mB-231 breast cancer cells by delta-tocotrienol is associated with loss of cyclin D1/CDK4 expression and accompanying changes in the state of phosphorylation of the retinoblastoma tumor suppressor gene product

Elangovan S, Hsieh TC, Wu JM.

Anticancer Res. 2008 Sep-Oct;28(5A):2641-7.

Tocotrienols, a subgroup within the vitamin E family of compounds, have shown antiproliferative and anticancer properties, however, the molecular basis of these effects remains to be elucidated. In this study, the effect of 3-tocotrienol on cell cycle arrest was assessed by studying the retinoblastoma protein (Rb) levels and phosphorylation status, levels of E2F (a transcription factor critically involved in the G1/S-phase transition of the mammalian cell cycle; originally identified as a DNA-binding protein essential for early region 1A-dependent activation of the adenovirus promoter designated E2), and other cell cycle controlling proteins in estrogen receptor-negative MDA-MB-231 breast cancer cells. The cell growth assay demonstrated that exposure of the MDA-MB-231 cells to 6-tocotrienol (1-20 microM) resulted in a dose- and time-dependent inhibition of cell growth as compared with vehicle treated cells and the magnitude of growth inhibition was higher at 10 and 20 microM treatment for 48 and 72 h. The phosphorylation status of Rb plays a central role in the control of the cell cycle at the G0/G1-phase. delta-Tocotrienol treatment reduced the total Rb and its phosphorylation at the Ser780, Ser795, Ser 807/811 and Thr826 positions in a dose- and time-dependent fashion. The site-specific inhibition of the phosphorylation of Rb by delta-tocotrienol was tightly associated with a marked reduction in the expression of cyclin D1 and its regulatory partner cyclin-dependant kinase 4 (CDK4), which is responsible for the phosphorylation of Rb at Ser780, Ser795, Ser 807/811 and Thr826. In addition, delta-tocotrienol also reduced the expression of E2F that occurred simultaneously with the loss of Rb phosphorylation and inhibition of cell cycle progression. Interestingly, delta-tocotrienol also caused a marked reduction in the expression of G2/M regulatory proteins including cyclin B1 and CDK1. To the best of our knowledge, this study was the first to reveal that the target of cell proliferative inhibitory action of delta-tocotrienol in a model estrogen receptor-negative human breast cancer cell line MDA-MB-231 is mediated by the loss of cyclin D1 and associated suppression of site-specific Rb phosphorylation, suggesting its future development and use as an anticancer agent.

Read Full Article Here

Synergistic antiproliferative effects of gamma-tocotrienol and statin treatment on mammary tumor cells

Wali VB, Sylvester PW.

Lipids. 2007 Dec;42(12):1113-23. Epub 2007 Aug 14.

Statins are potent inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A (HMGCoA) reductase and display anticancer activity, but their clinical use is limited by their high-dose toxicity. Similarly, gamma-tocotrienol, an isoform of vitamin E, also reduces HMGCoA reductase activity and displays potent anticancer activity. Studies were conducted to determine if combined low dose treatment of gamma-tocotrienol with individual statins resulted in a synergistic antiproliferative effect on neoplastic mouse +SA mammary epithelial cells. Treatment with 3-4 microM gamma-tocotrienol or 2-8 microM simvastatin, lovastatin or mevastatin alone resulted in a significant decrease, whereas treatment with 10-100 microM pravastatin had no effect on +SA cell growth. However, combined treatment of subeffective doses (0.25 or 10 microM) of individual statins with 0.25-2.0 microM gamma-tocotrienol resulted in a dose-responsive synergistic inhibition in +SA cell proliferation. Additional studies showed that treatment with subeffective doses of individual statins or gamma-tocotrienol alone had no effect, whereas combined treatment of these compounds resulted in a relatively large decrease in intracellular levels of phosphorylated (activated) MAPK, JNK, p38, and Akt. These findings strongly suggest that combined low dose treatment of gamma-tocotrienol with individual statins may have potential value in the treatment of breast cancer without causing myotoxicity that is associated with high dose statin treatment.

Tocotrienol levels in adipose tissue of benign and malignant breast lumps in patients in Malaysia

Nesaretnam, K., Gomez, P. A.,Selvaduray, K. R.,Razak, G. A.

Asia Pac J Clin Nutr, 2007;16(3):498-504

Data on dietary exposure to vitamin E by plasma or adipose tissue concentrations of alpha-tocopherol (alpha-T) in observational studies have failed to provide consistent support for the idea that alpha-T provides women with any protection from breast cancer. In contrast, studies indicate that alpha, gamma, and delta-tocotrienols but not alpha-T have potent anti-proliferative effects in human breast cancer cells. Our aim was to investigate whether there was a difference in tocopherol and tocotrienol concentrations in malignant and benign adipose tissue, in a Malaysian population consuming predominantly a palm oil diet. The study was undertaken using fatty acid levels in breast adipose tissue as a biomarker of qualitative dietary intake of fatty acids. The major fatty acids in breast adipose tissue of patients (benign and malignant) were oleic acid (45-46%), palmitic (28-29%) and linoleic (11-12%). No differences were evident in the fatty acid composition of the two groups. There was a significant difference (p=0.006) in the total tocotrienol levels between malignant (13.7 +/- 6.0 microg/g) and benign (20+/-6.0 microg/g) adipose tissue samples. However, no significant differences were seen in the total tocopherol levels (p=0.42) in the two groups. The study reveals that dietary intake influences adipose tissue fatty acid levels and that adipose tissue is a dynamic reservoir of fat soluble nutrients. The higher adipose tissue concentrations of tocotrienols in benign patients provide support for the idea that tocotrienols may provide protection against breast cancer.

Gamma-Tocotrienol inhibits ErbB3-dependent PI3K/Akt mitogenic signalling in neoplastic mammary epithelial cells

Samant GV, Sylvester PW.

Cell Prolif. 2006 Dec;39(6):563-74.

The antiproliferative effects of gamma-tocotrienol are associated with suppression in epidermal growth factor (EGF)-dependent phosphatidylinositol-3-kinase (PI3K)/PI3K-dependent kinase-1 (PDK-1)/Akt mitogenic signalling in neoplastic mammary epithelial cells. Studies were conducted to investigate the direct effects of gamma-tocotrienol treatment on specific components within the PI3K/PDK-1/Akt mitogenic pathway. +SA cells were grown in culture and maintained in serum-free media containing 10 ng/ml EGF as a mitogen. Treatment with 0-8 microm gamma-tocotrienol resulted in a dose-responsive decrease in the +SA cell growth and a corresponding decrease in phospho-Akt (active) levels. However, gamma-tocotrienol treatment had no direct inhibitory effect on Akt or PI3K enzymatic activity, suggesting that the inhibitory effects of gamma-tocotrienol occur upstream of PI3K, possibly at the level of the EGF-receptor (ErbB1). Additional studies were conducted to determine the effects of gamma-tocotrienol on ErbB receptor activation. Results showed that gamma-tocotrienol treatment had little or no effect on ErbB1 or ErbB2 receptor tyrosine phosphorylation, a prerequisite for substrate interaction and signal transduction, but did cause a significant and progressive decrease in the ErbB3 tyrosine phosphorylation. Because ErbB1 or ErbB2 receptors form heterodimers with the ErbB3 receptor, and ErbB3 heterodimers have been shown to be the most potent activators of PI3K, these findings strongly suggest that the antiproliferative effects of gamma-tocotrienol in neoplastic +SA mouse mammary epithelial cells are mediated by a suppression in ErbB3-receptor tyrosine phosphorylation and subsequent reduction in PI3K/PDK-1/Akt mitogenic signalling.