Endogenous metabolites of vitamin E limit inflammation by targeting 5-lipoxygenase

Pein H, Ville A, Pace S, Temml V, Garscha U, Raasch M, Alsabil K, Viault G, Dinh CP, Guilet D, Troisi F, Neukirch K, König S, Bilancia R, Waltenberger B, Stuppner H, Wallert M, Lorkowski S, Weinigel C, Rummler S, Birringer M, Roviezzo F, Sautebin L, Helesbeux JJ, Séraphin D, Mosig AS, Schuster D, Rossi A, Richomme P, Werz O, Koeberle A

Nat Commun. 2018 Sep 20;9(1):3834. doi: 10.1038/s41467-018-06158-5.

Abstract

Systemic vitamin E metabolites have been proposed as signaling molecules, but their physiological role is unknown. Here we show, by library screening of potential human vitamin E metabolites, that long-chain ω-carboxylates are potent allosteric inhibitors of 5-lipoxygenase, a key enzyme in the biosynthesis of chemoattractant and vasoactive leukotrienes. 13-((2R)-6-hydroxy-2,5,7,8-tetramethylchroman-2-yl)-2,6,10-trimethyltridecanoic acid (α-T-13′-COOH) can be synthesized from α-tocopherol in a human liver-on-chip, and is detected in human and mouse plasma at concentrations (8-49 nM) that inhibit 5-lipoxygenase in human leukocytes. α-T-13′-COOH accumulates in immune cells and inflamed murine exudates, selectively inhibits the biosynthesis of 5-lipoxygenase-derived lipid mediators in vitro and in vivo, and efficiently suppresses inflammation and bronchial hyper-reactivity in mouse models of peritonitis and asthma. Together, our data suggest that the immune regulatory and anti-inflammatory functions of α-tocopherol depend on its endogenous metabolite α-T-13′-COOH, potentially through inhibiting 5-lipoxygenase in immune cells.

Read More

Tocotrienol-Rich Vitamin E from Palm Oil (Tocovid) and Its Effects in Diabetes and Diabetic Nephropathy: A Pilot Phase II Clinical Trial.

Tan SMQ, Chiew Y, Ahmad B, Kadir KA

Nutrients. 2018 Sep 17;10(9). pii: E1315. doi: 10.3390/nu10091315.

Abstract

Tocotrienol-rich vitamin E from palm oil (Tocovid) has been shown to ameliorate diabetes through its superior antioxidant, antihyperglycemic, and anti-inflammatory properties in diabetic rats. This study aimed to investigate the effects of Tocovid on diabetic nephropathy in patients with type 2 diabetes. Baseline parameters of potential subjects such as HbA1c, blood pressure, Advanced Glycation Endproduct (AGE), soluble receptor for AGE (sRAGE), Nε-Carboxymethyllysine (Nε-CML), and Cystatin C were assessed for possible correlation with diabetic nephropathy. Only subjects with diabetic nephropathy or urine microalbuminuria-positive defined as Urine Albumin to Creatinine Ratio (UACR) >10 mg/mmol were recruited into a prospective, randomized, double-blinded, placebo-controlled trial. The intervention group (n = 22) received Tocovid 200 mg twice a day while the control group (n = 23) received placebo twice a day for 8 weeks. Changes in Hemoglobin A1c (HbA1c), blood pressure, serum biomarkers and renal parameters such as UACR, serum creatinine, and estimated Glomerular Filtration Rate (eGFR) were compared between the two groups. It was found that serum Nε-CML significantly correlated to the severity of microalbuminuria. For every 1 ng/mL increase in serum Nε-CML, the odds of diabetic nephropathy increased by 1.476 times. Tocovid, compared to placebo, significantly reduced serum creatinine but not eGFR, UACR, HbA1c, blood pressure, and serum biomarkers. In conclusion, serum Nε-CML is a potential biomarker for diabetic nephropathy. Treatment with Tocovid significantly reduced serum creatinine; therefore Tocovid may be a useful addition to the current treatment for diabetic nephropathy.

Read More

Synergistic effect of glucosamine and vitamin E against experimental rheumatoid arthritis in neonatal rats

Dai W, Qi C, Wang S

Biomed Pharmacother. 2018 Sep;105:835-840. doi: 10.1016/j.biopha.2018.05.136. Epub 2018 Jun 18.

Abstract

The effect of glucosamine and vitamin E against rheumatoid arthritis (RA) in a neonatal rat model was investigated. Lipid peroxidation, superoxide dismutase (SOD), catalase, reduced glutathione (GSH), glutathione peroxidase (Gpx), matrix metalloproteinase-3 (MMP-3), prostaglandin E2 (PGE2), ceruloplasmin, copper, zinc, nitric oxide (NO), uric acid, inducible nitric oxide synthase (iNOS), and nuclear factor-kappaB (NF-κB) levels were determined in control and rheumatoid arthritis neonatal rats. Glucosamine plus vitamin E supplementation reduced the MDA level by 61.9% and increased the SOD, catalase, GSH, Gpx, and zinc levels. MMP-3, PGE2, ceruloplasmin, copper, NO and uric acid levels were significantly reduced by supplementation of glucosamine plus vitamin E. NF-κB, and iNOS protein levels were decreased by 47.7% and 39.5%, respectively, by glucosamine plus vitamin E supplementation. Thus, supplementation with glucosamine plus vitamin E exerted a synergistic effect against RA.

Read More

Vitamin E supplementation improves high-densitiy lipoprotein and endothelial functions in end-stage kidney disease patients undergoing hemodialysis

Mune M, Uto-Kondo H, Iteya I, Fujii Y, Ikeda S, Ikewaki K

Clin Nephrol. 2018 Sep;90(3):212-221. doi: 10.5414/CN109197.

Abstract

BACKGROUND AND AIMS:

Patients with end-stage kidney disease (ESKD) undergoing hemodialysis (HD) have been shown to be at increased risk for cardiovascular disease (CVD). Decreased high-density lipoprotein cholesterol (HDL-C) and impaired cholesterol efflux capacity (CEC) have been reported in such patients, and effects of vitamin E supplementation on HDL functions are poorly understood. Therefore, the present study aimed to investigate effects of vitamin E supplementation on HDL and endothelial functions in ESKD patients undergoing HD. We also assessed the influence of diabetes and haptoglobin (Hp) phenotype on the effects of vitamin E.

MATERIALS AND METHODS:

Vitamin E (300 mg daily) was supplemented for 12 weeks, followed by a 10-week washout phase in 40 ESKD patients undergoing HD (20 diabetic and 20 nondiabetic patients). HDL functions, including CEC, antioxidant capacity, and anti-inflammatory activity, were investigated. In diabetic patients, endothelial function, as represented by flow-mediated vasodilatation (FMD), was also assessed. The findings were compared according to diabetic condition or Hp phenotype.

RESULTS:

Vitamin E significantly increased CEC, whereas antioxidant capacity and anti-inflammatory activity remained unchanged. Further, the improvement in CEC was maintained after the 10-week washout phase. Endothelial function was significantly improved in diabetic patients. Subanalyses based on diabetes or Hp phenotype revealed that neither diabetes nor Hp phenotype influenced the effects of vitamin E.

CONCLUSION:

In ESKD patients undergoing hemodialysis, vitamin E supplementation significantly improved the HDL function of CEC and, in diabetic patients, endothelial function. These effects were independent of Hp phenotype.

Read More

Perspective: Should Vitamin E Recommendations for Older Adults Be Increased?

Meydani SN, Lewis ED, Wu D

Adv Nutr. 2018 Sep 1;9(5):533-543. doi: 10.1093/advances/nmy035.

Abstract

Current vitamin E requirements are uniformly applied across the population for those >14 y of age. However, aging is associated with alterations in cellular and physiologic functions, which are affected by vitamin E. Therefore, it is questionable whether vitamin E requirements can be uniformly applied to all adult age categories. With aging, there is dysregulation of the immune system in which there are decreased cell-mediated and pathogen defense responses coupled with an overactive, prolonged inflammatory state. Both animal and human studies in the aged suggest that intake above currently recommended levels of vitamin E may improve immune and inflammatory responses and be associated with a reduced risk of infectious disease. We review the evidence that was considered in establishing the current requirements for vitamin E and highlight data that should be considered in determining the vitamin E requirements in older adults, particularly focusing on the evidence suggesting a benefit of increased vitamin E intake on immune function and inflammatory processes and resistance to infection. The main objective of this Perspective is to initiate the discussion of whether the current Dietary Reference Intake for vitamin E should be increased for the older population. We make this suggestion on the basis of mechanistic studies showing biological plausibility, correction of a major cellular dysfunction in older adults, and strong evidence from several animal and a few human studies indicating a reduction in risk and morbidity from infections.

Read More

Circulating γ-Tocopherol Concentrations Are Inversely Associated with Antioxidant Exposures and Directly Associated with Systemic Oxidative Stress and Inflammation in Adults

Abdulla KA, Um CY, Gross MD, Bostick RM

J Nutr. 2018 Sep 1;148(9):1453-1461. doi: 10.1093/jn/nxy132.

Abstract

BACKGROUND:

Although α- and γ-tocopherol are co-consumed antioxidants, circulating γ-tocopherol concentrations were paradoxically found to be inversely associated with total vitamin E intake and circulating α-tocopherol concentrations. There are limited data on this apparent paradox or on determinants of circulating γ-tocopherol concentrations.

OBJECTIVE:

To help clarify possible determinants of circulating γ-tocopherol concentrations, we investigated associations of circulating γ-tocopherol concentrations with various dietary and lifestyle factors and biomarkers of oxidative stress and inflammation.

METHODS:

We pooled cross-sectional data from 2 outpatient, adult, elective colonoscopy populations (pooled n = 419) on whom extensive dietary, lifestyle, and medical information was collected, and the following plasma concentrations were measured: α- and γ-tocopherol (via HPLC), F2-isoprostanes (FiPs; via gas chromatography-mass spectrometry), and high-sensitivity C-reactive protein (hsCRP; via latex-enhanced immunonephelometry). Multivariable general linear models were used to assess mean γ-tocopherol differences across quantiles of plasma antioxidant micronutrients, FiPs, and hsCRP; an oxidative balance score [OBS; a composite of anti- and pro-oxidant dietary and lifestyle exposures (a higher score indicates higher antioxidant relative to pro-oxidant exposures)]; and multiple dietary and lifestyle factors.

RESULTS:

Adjusted for serum total cholesterol, mean γ-tocopherol concentrations among those in the highest relative to the lowest tertiles of circulating α-tocopherol and β-carotene, the OBS, and total calcium and dietary fiber intakes were 31.0% (P < 0.0001), 29.0% (P < 0.0001), 27.6% (P = 0.0001), 29.7% (P < 0.0001), and 18.6% (P = 0.008) lower, respectively. For those in the highest relative to the lowest tertiles of circulating FiPs and hsCRP, mean γ-tocopherol concentrations were 50% (P < 0.0001) and 39.0% (P < 0.0001) higher, respectively.

CONCLUSIONS:

These findings support the conclusion that circulating γ-tocopherol concentrations are inversely associated with antioxidant exposures and directly associated with systemic oxidative stress and inflammation in adults. Additional research on possible mechanisms underlying these findings and on whether circulating γ-tocopherol may serve as a biomarker of oxidative stress, inflammation, or both is needed.

Read More

Dietary L-carnitine and vitamin-E; a strategy to combat ochratoxin-A induced immunosuppression.

Bhatti SA, Khan MZ, Hassan ZU, Saleemi MK, Khatoon A, Abidin ZU, Hameed MR

Toxicon. 2018 Aug 29. pii: S0041-0101(18)30358-1. doi: 10.1016/j.toxicon.2018.08.012. [Epub ahead of print]

Abstract

This study aimed to evaluate the effect of dietary ochratoxin A (OA), in the presence and absence of L-carnitine (LC) and vitamin E (VE), on the humoral immune responses of White Leghorn cockerels (WLC). One-day old white male Leghorn chicks were divided into 12 groups, having 20 birds each and were offered ration contaminated with OA (1.0 or 2.0 mg/kg feed) alone and concurrently with LC (1.0 g/kg) and/or VE (0.2 g/kg), for 42 days. The humoral immune responses were accessed by lymphoproliferative response to avian tuberculin, in-vivo phagosomes activity to carbon particles and antibody response to the sheep red blood cells (SRBCs). The dietary addition of OA alone suppressed the humoral immune responses, however, the exposure of birds to 1.0 mg/kg OA in the presence of LC and/or VE showed a significant reduction in OA induced immunotoxicity. This protective response was absent in the birds fed 2.0 mg/kg OA in the presence and absence of LC and/or VE. Histopathological and morphometric examination of the bursa of Fabricius exhibited a decrease in the severity and frequency of OA induced lesions in the presence of dietary LC and/or VE. The use of LC and VE as dietary supplement, can effectively overcome OA (≤1.0 mg/kg) induced immunosuppression.

Read More

Electrophilic nitroalkene-tocopherol derivatives: synthesis, physicochemical characterization and evaluation of anti-inflammatory signaling responses

Rodriguez-Duarte J, Dapueto R, Galliussi G, Turell L, Kamaid A, Khoo NKH, Schopfer FJ, Freeman BA, Escande C, Batthyány C, Ferrer-Sueta G, López GV

Sci Rep. 2018 Aug 24;8(1):12784. doi: 10.1038/s41598-018-31218-7.

Abstract

Inflammation plays a major role in the onset and development of chronic non-communicable diseases like obesity, cardiovascular diseases and cancer. Combined, these diseases represent the most common causes of death worldwide, thus development of novel pharmacological approaches is crucial. Electrophilic nitroalkenes derived from fatty acids are formed endogenously and exert anti-inflammatory actions by the modification of proteins involved in inflammation signaling cascades. We have developed novel nitroalkenes derived from α-tocopherolaiming to increase its salutary actions by adding anti-inflammatory properties to a well-known nutraceutical. We synthesized and characterized an α-tocopherol-nitroalkene (NATOH) and two hydrosoluble analogues derived from Trolox (NATxME and NATx0). We analyzed the kinetics of the Michael addition reaction of these compounds with thiols in micellar systems aiming to understand the effect of hydrophobic partition on the reactivity of nitroalkenes. We studied NATxME in vitro showing it exerts non-conventional anti-inflammatory responses by inducing Nrf2-Keap1-dependent gene expression and inhibiting the secretion of NF-κB dependent pro-inflammatory cytokines. NATxME was also effective in vivo, inhibiting neutrophil recruitment in a zebrafish model of inflammation. This work lays the foundation for the rational design of a new therapeutic strategy for the prevention and treatment of metabolic and inflammation-related diseases.

Read More

Vitamin E hydroquinone is an endogenous regulator of ferroptosis via redox control of 15-lipoxygenase

Hinman A, Holst CR, Latham JC, Bruegger JJ, Ulas G, McCusker KP, Amagata A, Davis D, Hoff KG, Kahn-Kirby AH, Kim V, Kosaka Y, Lee E, Malone SA, Mei JJ, Richards SJ, Rivera V, Miller G, Trimmer JK, Shrader WD

PLoS One. 2018 Aug 15;13(8):e0201369. doi: 10.1371/journal.pone.0201369. eCollection 2018.

Abstract

Ferroptosis is a form of programmed cell death associated with inflammation, neurodegeneration, and ischemia. Vitamin E (alpha-tocopherol) has been reported to prevent ferroptosis, but the mechanism by which this occurs is controversial. To elucidate the biochemical mechanism of vitamin E activity, we systematically investigated the effects of its major vitamers and metabolites on lipid oxidation and ferroptosis in a striatal cell model. We found that a specific endogenous metabolite of vitamin E, alpha-tocopherol hydroquinone, was a dramatically more potent inhibitor of ferroptosis than its parent compound, and inhibits 15-lipoxygenase via reduction of the enzyme’s non-heme iron from its active Fe3+ state to an inactive Fe2+ state. Furthermore, a non-metabolizable isosteric analog of vitamin E which retains antioxidant activity neither inhibited 15-lipoxygenase nor prevented ferroptosis. These results call into question the prevailing model that vitamin E acts predominantly as a non-specific lipophilic antioxidant. We propose that, similar to the other lipophilic vitamins A, D and K, vitamin E is instead a pro-vitamin, with its quinone/hydroquinone metabolites responsible for its anti-ferroptotic cytoprotective activity.

Read More

Combination of vitamin E and L-carnitine is superior in protection against Isoproterenol-induced cardiac affection: a histopathological evidence

Huwait EA

Folia Morphol (Warsz). 2018 Aug 14. doi: 10.5603/FM.a2018.0070. [Epub ahead of print]

Abstract

BACKGROUND:

L-carnitine and Vitamin E have antioxidant properties. This study aimed to assess the effectiveness of L-carnitine, Vitamin Eand the combination of them in protection against isoproterenol (ISO)-induced biochemical and histopathological changes in rat heart.

MATERIAL AND METHODS:

Fifty male Wistar rats assigned to 5 groups; control, ISO-treated group (100 mg/kg), ISO+vitamin E-treated group (100 IU/kg), ISO+L-carnitine (100 mg/kg) and ISO+vitamin E+L-carnitine treated group. At the end of the experiment, serum cardiac enzyme as well as the cardiac level Malondialdehyde (MDA), antioxidant enzymes and inflammatory cytokines IL-6, TNF-alpha were assessed. Histopathological changes in the left ventricle wall was assessed using the light and electron microscopy.

RESULTS:

Treating rats with vitamin E and L-carnitine could alleviate ISO-induced changes as it significantly reduced the serum level cardiac enzymes, MDA and IL-6, TNF-alpha and improved the antioxidants enzymes (SOD, GSPxase and GSRase). Histopathological, they improved cardiac fibers atrophy, hemorrhages between cardiac fibers, lost striations, and disturbed sarcomere structure. The combined effect of vitamin E and L-carnitine was more superior compared to the other groups.

CONCLUSION:

Combined administration of vitamin E, L-carnitine ameliorated the biochemical and histopathological cardiac affection induced by ISO. The effect seemed to be mediated through the antioxidant and anti-inflammatory effect of vitamin E, L-carnitine. Administration of these two element is recommended for patient at risk for myocardial infarction.

Read More