Pharmacokinetics and safety of vitamin E δ-tocotrienol after single and multiple doses in healthy subjects with measurement of vitamin E metabolite

Mahipal A, Klapman J, Vignesh S, Yang CS, Neuger A, Chen DT, Malafa MP.

Cancer Chemother Pharmacol. 2016 Jul;78(1):157-65. doi: 10.1007/s00280-016-3048-0.

Abstract

Vitamin E delta-tocotrienol (VEDT) has demonstrated chemopreventive and antineoplastic activity in preclinical models. The aim of our study was to determine the safety and pharmacokinetics of VEDT and its metabolites after single- and multiple-dose administrations in healthy subjects. Our results suggest that VEDT can be safely consumed by healthy subjects and achieve bioactive levels, supporting the investigation of VEDT for chemoprevention.

Read More

Vitamins in Pancreatic Cancer: A Review of Underlying Mechanisms and Future Applications

Davis-Yadley AH, Malafa MP.

Adv Nutr. 2015 Nov 13;6(6):774-802.

Abstract

Although there is increasing evidence that vitamins influence pancreatic adenocarcinoma biology and carcinogenesis, a comprehensive review is lacking. In this study, we performed a PubMed literature search to review the anticancer mechanisms and the preclinical and clinical studies that support the development of the bioactive vitamins A, C, D, E, and K in pancreatic cancer intervention. Preclinical studies have shown promising results for vitamin A in pancreatic cancer prevention, with clinical trials showing intriguing responses in combination with immunotherapy. For vitamin C, preclinical studies have shown slower tumor growth rates and/or increased survival when used alone or in combination with gemcitabine, with clinical trials with this combination revealing decreased primary tumor sizes and improved performance status. Preclinical studies with vitamin D analogues have shown potent antiproliferative effects and repression of migration and invasion of pancreatic cancer cells, with a clinical trial showing increased time to progression when calciferol was added to docetaxel. For vitamin E, preclinical studies have shown that δ-tocotrienol and γ-tocotrienol inhibited tumor cell growth and survival and augmented gemcitabine activity. Early-phase clinical trials with δ-tocotrienol are ongoing. Vitamin K demonstrates activation of apoptosis and inhibition of cellular growth in pancreatic tumor cells; however, there are no clinical studies available for further evaluation. Although preclinical and clinical studies are encouraging, randomized controlled trials with endpoints based on insights gained from mechanistic and preclinical studies and early-phase clinical trials are required to determine the efficacy of bioactive vitamin interventions in pancreatic cancer.

Read More

EGR-1/Bax pathway plays a role in vitamin E δ-tocotrienol-induced apoptosis in pancreatic cancer cells.

Wang C, Husain K, Zhang A, Centeno BA, Chen DT, Tong Z, Sebti SM, Malafa MP.

J Nutr Biochem. 2015 Aug;26(8):797-807.

Abstract

The anticancer activity of δ-tocotrienol, a bioactive vitamin E present in whole grain cereals, annatto beans and palm fruit, is strongly dependent on its effect on the induction of apoptosis. δ-Tocotrienol-induced apoptosis is associated with consistent induction in the expression of the proapoptotic protein Bcl-2-associated X protein (Bax). The molecular mechanism by which δ-tocotrienol regulates Bax expression is unknown. We carried out a DNA microarray study that identified δ-tocotrienol induction of the zinc finger transcription factor EGR-1 in pancreatic cancer cells. Here, we provide evidence linking δ-tocotrienol-induced apoptosis in pancreatic cancer cells to EGR-1 regulation of Bax expression. Forced expression of EGR-1 induces Bax expression and apoptosis in pancreatic cancer cells. In contrast, knockdown of δ-tocotrienol-induced EGR-1 by small interfering RNA attenuated δ-tocotrienol-induced Bax expression and reduced δ-tocotrienol-induced apoptosis. Further analyses showed that de novo protein synthesis was not required for δ-tocotrienol-induced EGR-1 expression, suggesting a direct effect of δ-tocotrienol on EGR-1 expression. Furthermore, a chromatin immunoprecipitation assay demonstrated that EGR-1 binds to the Bax gene promoter. Finally, δ-tocotrienol treatment induced Bax expression and activated EGR-1 in the pancreatic neoplastic cells of the PDX-Cre Kras genetically engineered model of pancreatic cancer. Our study provides the first evidence for EGR-1 as a direct target of vitamin E δ-tocotrienol, suggesting that EGR-1 may act as a proapoptotic factor in pancreatic cancer cells via induction of Bax.

Read More

Cytotoxicity and apoptotic activities of alpha-, gamma- and delta-tocotrienol isomers on human cancer cells.

Lim SW, Loh HS, Ting KN, Bradshaw TD, Zeenathul NA.

BMC Complement Altern Med. 2014 Dec 6;14(1):469.

Abstract

BACKGROUND:

Tocotrienols, especially the gamma isomer was discovered to possess cytotoxic effects associated with the induction of apoptosis in numerous cancers. Individual tocotrienol isomers are believed to induce dissimilar apoptotic mechanisms in different cancer types. This study was aimed to compare the cytotoxic potency of alpha-, gamma- and delta-tocotrienols, and to explore their resultant apoptotic mechanisms in human lung adenocarcinoma A549 and glioblastoma U87MG cells which are scarcely researched.

METHODS:

The cytotoxic effects of alpha-, gamma- and delta-tocotrienols in both A549 and U87MG cancer cells were first determined at the cell viability and morphological aspects. DNA damage types were then identified by comet assay and flow cytometric study was carried out to support the incidence of apoptosis. The involvements of caspase-8, Bid, Bax and mitochondrial membrane permeability (MMP) in the execution of apoptosis were further expounded.

RESULTS:

All tocotrienols inhibited the growth of A549 and U87MG cancer cells in a concentration- and time-dependent manner. These treated cancer cells demonstrated some hallmarks of apoptotic morphologies, apoptosis was further confirmed by cell accumulation at the pre-G1 stage. Alltocotrienols induced only double strand DNA breaks (DSBs) and no single strand DNA breaks (SSBs) in both treated cancer cells. Activation of caspase-8 leading to increased levels of Bid and Bax as well as cytochrome c release attributed by the disruption of mitochondrial membrane permeability in both A549 and U87MG cells were evident.

CONCLUSIONS:

This study has shown that delta-tocotrienol, in all experimental approaches, possessed a higher efficacy (shorter induction period) and effectiveness (higher induction rate) in the execution of apoptosis in both A549 and U87MG cancer cells as compared to alpha- and gamma-tocotrienols. Tocotrienols in particular the delta isomer can be an alternative chemotherapeutic agent for treating lung and brain cancers.

Read More

Synergistic inhibition of cancer cell proliferation with a combination of δ-tocotrienol and ferulic acid.

Eitsuka T, Tatewaki N, Nishida H, Kurata T, Nakagawa K, Miyazawa T

Biochem Biophys Res Commun. 2014 Oct 5

Abstract

Rice bran consists of many functional compounds and thus much attention has been focused on the health benefits of its components. Here, we investigated the synergistic inhibitory effects of its components, particularly δ-tocotrienol (δ-T3) and ferulic acid (FA), against the proliferation of an array of cancer cells, including DU-145 (prostate cancer), MCF-7 (breast cancer), and PANC-1 (pancreatic cancer) cells. The combination of δ-T3 and FA markedly reduced cell proliferation relative to δ-T3 alone, and FA had no effect when used alone. Although δ-T3 induced G1 arrest by up-regulating p21 in PANC-1 cells, more cells accumulated in G1 phase with the combination of δ-T3 and FA. This synergistic effect was attributed to an increase in the cellular concentration of δ-T3 by FA. Our results suggest that the combination of δ-T3 and FA may present a new strategy for cancer prevention and therapy.

Vitamin E delta-Tocotrienol Induces p27(Kip1)-Dependent Cell-Cycle Arrest in Pancreatic Cancer Cells via an E2F-1-Dependent Mechanism

Hodul, PJ Dong Y, Husain K et al

PLoS One,2013;8(2):e52526

Vitamin E delta-tocotrienol has been shown to have antitumor activity, but the precise molecular mechanism by which it inhibits the proliferation of cancer cells remains unclear. Here, we demonstrated that delta-tocotrienol exerted significant cell growth inhibition pancreatic ductal cancer (PDCA) cells without affecting normal human pancreatic ductal epithelial cell growth. We also showed that delta-tocotrienol-induced growth inhibition occurred concomitantly with G(1) cell-cycle arrest and increased p27(Kip1) nuclear accumulation. This finding is significant considering that loss of nuclear p27(Kip1) expression is a well-established adverse prognostic factor in PDCA. Furthermore, delta-tocotrienol inactivated RAF-MEK-ERK signaling, a pathway known to suppress p27(Kip1) expression. To determine whether p27(Kip1) induction is required for delta-tocotrienol inhibition of PDCA cell proliferation, we stably silenced the CDKN1B gene, encoding p27(Kip1), in MIAPaCa-2 PDCA cells and demonstrated that p27(Kip1) silencing suppressed cell-cycle arrest induced by delta-tocotrienol. Furthermore, delta-tocotrienol induced p27(Kip1) mRNA expression but not its protein degradation. p27(Kip1) gene promoter activity was induced by delta-tocotrienol through the promoter’s E2F-1 binding site, and this activity was attenuated by E2F-1 depletion using E2F-1 small interfering RNA. Finally, decreased proliferation, mediated by Ki67 and p27(Kip1) expression by delta-tocotrienol, was confirmed in vivo in a nude mouse xenograft pancreatic cancer model. Our findings reveal a new mechanism, dependent on p27(Kip1) induction, by which delta-tocotrienol can inhibit proliferation in PDCA cells, providing a new rationale for p27(Kip1) as a biomarker for delta-tocotrienol efficacy in pancreatic cancer prevention and therapy.

Read More

Vitamin E delta-tocotrienol augments the antitumor activity of gemcitabine and suppresses constitutive NF-kappaB activation in pancreatic cancer

Husain, K., Francois, R. A., Yamauchi, T., Perez, M., Sebti, S. M., Malafa, M. P.

Mol Cancer Ther. 2011 Dec;10(12):2363-72.

The NF-kappaB transcription factor functions as a crucial regulator of cell survival and chemoresistance in pancreatic cancer. Recent studies suggest that tocotrienols, which are the unsaturated forms of vitamin E, are a promising class of anticancer compounds that inhibit the growth and survival of many cancer cells, including pancreatic cancer. Here, we show that tocotrienols inhibited NF-kappaB activity and the survival of human pancreatic cancer cells in vitro and in vivo. Importantly, we found the bioactivity of the four natural tocotrienol compounds (alpha-, beta-, delta-, and gamma-tocotrienol) to be directly related to their ability to suppress NF-kappaB activity in vitro and in vivo. The most bioactive tocotrienol for pancreatic cancer, delta-tocotrienol, significantly enhanced the efficacy of gemcitabine to inhibit pancreatic cancer growth and survival in vitro and in vivo. Moreover, we found that delta-tocotrienol augmentation of gemcitabine activity in pancreatic cancer cells and tumors is associated with significant suppression of NF-kappaB activity and the expression of NF-kappaB transcriptional targets (Bcl-X(L), X-linked inhibitor of apoptosis, and survivin). Our study represents the first comprehensive preclinical evaluation of the activity of natural vitamin E compounds in pancreatic cancer. Given these results, we are conducting a phase I trial of delta-tocotrienol in patients with pancreatic cancer using pancreatic tumor cell survival and NF-kappaB signaling components as intermediate biomarkers. Our data also support future clinical investigation of delta-tocotrienol to augment gemcitabine activity in pancreatic cancer.

Tocotrienols inhibit AKT and ERK activation and suppress pancreatic cancer cell proliferation by suppressing the ErbB2 pathway

Shin-Kang S, Ramsauer VP, Lightner J, Chakraborty K, Stone W, Campbell S, Reddy SA, Krishnan K.

Free Radic Biol Med. 2011 Sep 15;51(6):1164-74. Epub 2011 Jun 21.

Tocotrienols are members of the vitamin E family but, unlike tocopherols, possess an unsaturated isoprenoid side chain that confers superior anti-cancer properties. The ability of tocotrienols to selectively inhibit the HMG-CoA reductase pathway through posttranslational degradation and to suppress the activity of transcription factor NF-κB could be the basis for some of these properties. Our studies indicate that γ- and δ-tocotrienolshave potent antiproliferative activity in pancreatic cancer cells (Panc-28, MIA PaCa-2, Panc-1, and BxPC-3). Indeed both tocotrienols induced cell death (>50%) by the MTT cell viability assay in all four pancreatic cancer cell lines. We also examined the effects of the tocotrienols on the AKT and the Ras/Raf/MEK/ERK signaling pathways by Western blotting analysis. γ- and δ-tocotrienol treatment of cells reduced the activation of ERK MAP kinase and that of its downstream mediator RSK (ribosomal protein S6 kinase) in addition to suppressing the activation of protein kinase AKT. Suppression of activation of AKT by γ-tocotrienol led to downregulation of p-GSK-3β and upregulation accompanied by nuclear translocation of Foxo3. These effects were mediated by the downregulation of Her2/ErbB2 at the messenger level. Tocotrienols but not tocopherols were able to induce the observed effects. Our results suggest that the tocotrienol isoforms of vitamin E can induce apoptosis in pancreatic cancer cells through the suppression of vital cell survival and proliferative signaling pathways such as those mediated by the PI3-kinase/AKT and ERK/MAP kinases via downregulation of Her2/ErbB2 expression. The molecular components for this mechanism are not completely elucidated and need further investigation.

γ-Tocotrienol inhibits pancreatic tumors and sensitizes them to gemcitabine treatment by modulating the inflammatory microenvironment

Kunnumakkara AB, Sung B, Ravindran J, Diagaradjane P, Deorukhkar A, Dey S, Koca C, Yadav VR, Tong Z, Gelovani JG, Guha S, Krishnan S, Aggarwal BB.

Cancer Res. 2010 Nov 1;70(21):8695-705.

Pancreatic cancers generally respond poorly to chemotherapy, prompting a need to identify agents that could sensitize tumors to treatment. In this study, we investigated the response of human pancreatic cells to γ-tocotrienol (γ-T3), a novel, unsaturated form of vitamin E found in palm oil and rice bran oil, to determine whether it could potentiate the effects of gemcitabine, a standard of care in clinical treatment of pancreatic cancer. γ-T3 inhibited the in vitro proliferation of pancreatic cancer cell lines with variable p53 status and potentiated gemcitabine-induced apoptosis. These effects correlated with an inhibition of NF-κB activation by γ-T3 and a suppression of key cellular regulators including cyclin D1, c-Myc, cyclooxygenase-2 (COX-2), Bcl-2, cellular inhibitor of apoptosis protein, survivin, vascular endothelial growth factor (VEGF), ICAM-1, and CXCR4. In an orthotopic nude mouse model of human pancreatic cancer, p.o. administration of γ-T3 inhibited tumor growth and enhanced the antitumor properties of gemcitabine. Immunohistochemical analysis indicated a correlation between tumor growth inhibition and reduced expression of Ki-67, COX-2, matrix metalloproteinase-9 (MMP-9), NF-κB p65, and VEGF in the tissue. Combination treatment also downregulated NF-κB activity along with the NF-κB–regulated gene products, such as cyclin D1, c-Myc, VEGF, MMP-9, and CXCR4. Consistent with an enhancement of tumor apoptosis, caspase activation was observed in tumor tissues. Overall, our findings suggest that γ-T3 can inhibit the growth of human pancreatic tumors and sensitize them to gemcitabine by suppressing NF-κB–mediated inflammatory pathways linked to tumorigenesis.

Read Full Article Here

d-δ-Tocotrienol-mediated suppression of the proliferation of human PANC-1, MIA PaCa-2, and BxPC-3 pancreatic carcinoma cells

Hussein D, Mo H.

Pancreas. 2009 May;38(4):e124-36.

Objective: The rate-limiting activity of the mevalonate pathway, 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase, provides intermediates essential for growth. Competitive inhibitors of HMG CoA reductase, such as the statins, and down-regulators of reductase, such as the tocotrienols, suppress tumor growth. We evaluated the impact of d-delta-tocotrienol, the most potent vitamin E isomer, on human MIA PaCa-2 and PANC-1 pancreatic carcinoma cells and BxPC-3 pancreatic ductal adenocarcinoma cells.

Methods: Cell proliferation was measured by using CellTiter 96 Aqueous One Solution (Promega, Madison, Wis). Cell cycle distribution was determined by flow cytometry. Apoptosis was evaluated by Annexin V staining and fluorescence microscopy after dual staining with acridine orange and ethidium bromide.

Results: d-delta-Tocotrienol induced concentration-dependent suppression of cell proliferation with 50% inhibitory concentrations of 28 (6) micromol/L (MIA PaCa-2), 35 (7) micromol/L (PANC-1), and 35 (8) microL (BxPC-3), respectively. These effects are attributable to cell cycle arrest at the G1 phase and apoptosis. Mevalonate attenuated d-delta-tocotrienol-mediated growth inhibition. A physiologically attainable blend of d-delta-tocotrienol and lovastatin synergistically suppressed the proliferation of MIA PaCa-2 cells.

Conclusions: Suppression of mevalonate pathway activities, be it by modulators of HMG CoA reductase (statins, tocotrienols, and farnesol), farnesyl transferase (farnesyl transferase inhibitors), and/or mevalonate pyrophosphate decarboxylase (phenylacetate) activity, may have a potential in pancreatic cancer chemotherapy.