Abstract
α-Tocopherol transfer protein (α-TTP) is so far the only known protein that specifically recognizes α-tocopherol (α-Toc), the most abundant and most biologically active form of vitamin E, in higher animals. α-TTP is highly expressed in the liver where α-TTP selects α-Toc among vitamin E forms taken up via plasma lipoproteins and promotes its secretion to circulating lipoproteins. Thus, α-TTP is a major determinant of plasma α-Toc concentrations. Familial vitamin E deficiency, also called Ataxia with vitamin E deficiency, is caused by mutations in the α-TTP gene. More than 20 different mutations have been found in the α-TTP gene worldwide, among which some missense mutations provided valuable clues to elucidate the molecular mechanisms underlying intracellular α-Toc transport. In hepatocytes, α-TTP catalyzes the vectorial transport of α-Toc from the endocytotic compartment to the plasma membrane (PM) by targeting phosphatidylinositol phosphates (PIPs) such as PI(4,5)P2. By binding PIPs at the PM, α-TTP opens the lid covering the hydrophobic pocket, thus facilitating the release of bound α-Toc to the PM.