Clinical evaluation of photoprotective effect by a topical antioxidants combination (tocopherols and tocotrienols)

Pedrelli VF, Lauriola MM, Pigatto PD.

J Eur Acad Dermatol Venereol. 2011 Sep 14.

Background: Vitamin E is among the earliest recognized antioxidants. Recent findings suggested that tocotrienols have superior activity than tocopherols. Moreover, vitamin A is well-known in dermatology for its actions, including the ultraviolet radiation absorbing property.

Objectives: In view of experimental evidence for the photoprotective properties of these antioxidants, we evaluated in 30 patients with photosensitivity, the prophylactic efficacy of a new topical agent, containing tocopherols 10% and tocotrienols 0.3%, compared with retinol, simple vehicle and untreated areas.

Methods: After determination of the minimal UVB erythema dose (MED), two areas of 2 × 2 cm were selected on the buttocks of each subject, one of which was treated with the antioxidant formulation whereas the other field did not undergo any treatment. Therefore, both areas were irradiated with a twofold MED. As further controls, other two similar areas, selected on the forearm of 15 patients, were photo-irradiated similarly, 30 min after application of the simple vehicle to a field and of vitamin A in the same vehicle to the other. Reactions (erythema/oedema/itch/vesciculation) assessment was carried out assigning scores indicative of their intensity; then, mean values +DS of scores were calculated. Results  The pre-treatment with the vitamin E formulation highly protects against photosensitivity, and all reactions to irradiation were significantly lower in the areas treated with the topical vitamin E formulation compared to those treated with the simple vehicle or vitamin A.

Conclusions: The use of a new topical formulation containing significant concentrations of tocotrienols and tocopherols represents a promising strategy to reduce the photo-induced skin damage.

Hematopoietic recovery and amelioration of radiation-induced lethality by the vitamin E isoform δ-tocotrienol

Satyamitra MM, Kulkarni S, Ghosh SP, Mullaney CP, Condliffe D, Srinivasan V.

Radiat Res. 2011 Jun;175(6):736-45.

 δ-Tocotrienol (DT3), a vitamin E isoform, is associated with strong antioxidant and immunomodulatory properties. We confirmed the potent antioxidant activity in membrane systems and showed that DT3 is an effective radiation protector and mitigator. DT3 (4 μM, P < 0.001) inhibited lipid peroxidation in mouse liver microsomes and nitric oxide (NO) formation (20 μM DT3, P < 0.01) in RAW264.7 cells, a murine alveolar macrophage line. In CD2F1 mice exposed to lethal total-body radiation from a (60)Co γ-radiation source, a single subcutaneous (s.c.) injection of DT3 before or after irradiation produced a significant increase in 30-day survival. DT3 was effective from 18.75 to 300 mg/kg (–24 h, P < 0.001). A single dose of 150 or 300 mg/kg DT3 given 24 h before irradiation (radioprotection) resulted in dose reduction factors (DRFs) of 1.19 and 1.27, respectively (P < 0.001). Further, DT3 reduced radiation lethality when administered 2, 6 or 12 h after irradiation, and 150 mg/kg DT3 administered 2 h after exposure conferred a DRF of 1.1 (mitigation). The optimum schedule of 300 mg/kg DT3 24 h prior to 7 Gy significantly reduced pancytopenia compared to irradiated controls (P < 0.05). The large therapeutic potential of and multi-lineage hematopoietic recovery for DT3 warrants further studies.

Gamma tocotrienols protects against radiation exposure

Lisa Hutson

Lisa Hutson

A form of Vitamin E may help protect against high levels of radiation exposure. Studies show that a potent form of Vitamin E called gamma tocotrienols may counteract the harmful effects of radiation. “It is something we have been working on for about five years now,” says Dr. Martin Hauer-Jensen, director of radiation health at UAMS.

Read Full Article Here

Pentoxifylline enhances the radioprotective properties of γ-tocotrienol: Differential effects on the hematopoietic, gastrointestinal and vascular systems

Berbée M, Fu Q, Garg S, Kulkarni S, Kumar KS, Hauer-Jensen M.

Radiat Res. 2011 Mar;175(3):297-306.

The vitamin E analog γ-tocotrienol (GT3) is a potent radioprotector and mitigator. This study was performed to (a) determine whether the efficacy of GT3 can be enhanced by the addition of the phosphodiesterase inhibitor pentoxifylline (PTX) and (b) to obtain information about the mechanism of action. Mice were injected subcutaneously with vehicle, GT3 [400 mg/kg 24 h before total-body irradiation (TBI)], PTX (200 mg/kg 30 min before TBI), or GT3+PTX before being exposed to 8.5-13 Gy TBI. Overall lethality, survival time and intestinal, hematopoietic and vascular injury were assessed. Cytokine levels in the bone marrow microenvironment were measured, and the requirement for endothelial nitric oxide synthase (eNOS) was studied in eNOS-deficient mice. GT3+PTX significantly improved survival compared to GT3 alone and provided full protection against lethality even after exposure to 12.5 Gy. GT3+PTX improved bone marrow CFUs, spleen colony counts and platelet recovery compared to GT3 alone. GT3 and GT3+PTX increased bone marrow plasma G-CSF levels as well as the availability of IL-1α, IL-6 and IL-9 in the early postirradiation phase. GT3 and GT3+PTX were equally effective in ameliorating intestinal injury and vascular peroxynitrite production. Survival studies in eNOS-deficient mice and appropriate controls revealed that eNOS was not required for protection against lethality after TBI. Combined treatment with GT3 and PTX increased postirradiation survival over that with GT3 alone by a mechanism that may depend on induction of hematopoietic stimuli. GT3+PTX did not reduce GI toxicity or vascular oxidative stress compared to GT3 alone. The radioprotective effect of either drug alone or both drugs in combination does not require the presence of eNOS.

Read Full Article Here

Reduction of radiation-induced vascular nitrosative stress by the vitamin E analog γ-tocotrienol: Evidence of a role for tetrahydrobiopterin

Berbee M, Fu Q, Boerma M, Pathak R, Zhou D, Kumar KS, Hauer-Jensen M.

Int J Radiat Oncol Biol Phys. 2011 Mar 1;79(3):884-91

Purpose: The vitamin E analog γ-tocotrienol (GT3) is a powerful radioprotector. GT3 reduces postradiation vascular peroxynitrite production, an effect dependent on inhibition of hydroxy-methylglutaryl-coenzyme A reductase. Hydroxy-methylglutaryl-coenzyme A reductase inhibitors mediate their pleiotropic effects via endothelial nitric oxide synthase that requires the cofactor tetrahydrobiopterin (BH4). This study investigated the effects of radiation on BH4 bioavailability and of GT3 on BH4 metabolism.

Methods And Materials: Mice were exposed to 8.5 Gy of total body irradiation (TBI). Lung BH4 and total biopterin concentrations were measured 0, 3.5, 7, 14, and 21 days after TBI by use of differential oxidation followed by high-performance liquid chromatography. The effect of exogenous GT3 and BH4 treatment on postradiation vascular oxidative stress and bone marrow colony-forming units were assessed in vivo. The effect of GT3 on endothelial cell apoptosis and endothelial expression of guanosine triphosphate (GTP) cyclohydrolase 1 (GTPCH), GTPCH feedback regulatory protein (GFRP), GFRP transcription, GFRP protein levels, and GFRP-GTPCH protein binding was determined in vitro.

Results: Compared with baseline levels, lung BH4 concentrations decreased by 24% at 3.5 days after TBI, an effect that was reversed by GT3. At 14 and 21 days after TBI, compensatory increases in BH4 (58% and 80%, respectively) were observed. Relative to vehicle-treated controls, both GT3 and BH4 supplementation reduced postirradiation vascular peroxynitrite production at 3.5 days (by 66% and 33%, respectively), and BH4 resulted in a 68% increase in bone marrow colony-forming units. GT3 ameliorated endothelial cell apoptosis and reduced endothelial GFRP protein levels and GFRP-GTPCH binding by decreasing transcription of the GFRP gene.

Conclusions: BH4 bioavailability is reduced in the early postradiation phase. Exogenous administration of BH4 reduces postirradiation vascular oxidative stress. GT3 potently reduces the expression of GFRP, one of the key regulatory proteins in the BH4 pathway, and may thus exert some of its beneficial effects on postradiation free radical production partly by counteracting the decrease in BH4.

Read Full Article Here

Delta-tocotrienol protects mouse and human hematopoietic progenitors from gamma-irradiation through extracellular signal-regulated kinase/mammalian target of rapamycin signaling

Li XH, Fu D, Latif NH, Mullaney CP, Ney PH, Mog SR, Whitnall MH, Srinivasan V, Xiao M.

Haematologica. 2010 Dec;95(12):1996-2004.

Background: Exposure to γ-radiation causes rapid hematopoietic cell apoptosis and bone marrow suppression. However, there are no approved radiation countermeasures for the acute radiation syndrome. In this study, we demonstrated that natural δ-tocotrienol, one of the isomers of vitamin E, significantly enhanced survival in total body lethally irradiated mice. We explored the effects and mechanisms of δ-tocotrienol on hematopoietic progenitor cell survival after γ-irradiation in both in vivo and in vitro experiments.

Design And Methods: CD2F1 mice and human hematopoietic progenitor CD34(+) cells were treated with δ-tocotrienol or vehicle control 24 h before or 6 h after γ-irradiation. Effects of δ-tocotrienol on hematopoietic progenitor cell survival and regeneration were evaluated by clonogenicity studies, flow cytometry, and bone marrow histochemical staining. δ-tocotrienol and γ-irradiation-induced signal regulatory activities were assessed by immunofluorescence staining, immunoblotting and short-interfering RNA assay.

Results: δ-tocotrienol displayed significant radioprotective effects. A single injection of δ-tocotrienol protected 100% of CD2F1 mice from total body irradiation-induced death as measured by 30-day post-irradiation survival. δ-tocotrienol increased cell survival, and regeneration of hematopoietic microfoci and lineage(-)/Sca-1(+)/ckit(+) stem and progenitor cells in irradiated mouse bone marrow, and protected human CD34(+) cells from radiation-induced damage. δ-tocotrienol activated extracellular signal-related kinase 1/2 phosphorylation and significantly inhibited formation of DNA-damage marker γ-H2AX foci. In addition, δ-tocotrienol up-regulated mammalian target of rapamycin and phosphorylation of its downstream effector 4EBP-1. These alterations were associated with activation of mRNA translation regulator eIF4E and ribosomal protein S6, which is responsible for cell survival and growth. Inhibition of extracellular signal-related kinase 1/2 expression by short interfering RNA abrogated δ-tocotrienol-induced mammalian target of rapamycin phosphorylation and clonogenicity, and increased γ-H2AX foci formation in irradiated CD34(+) cells.

Conclusions: Our data indicate that δ-tocotrienol protects mouse bone marrow and human CD34(+) cells from radiation-induced damage through extracellular signal-related kinase activation-associated mammalian target of rapamycin survival pathways.

Read Full Article Here

 

Hematological targets of radiation damage

Kulkarni S, Ghosh SP, Hauer-Jensen M, Kumar KS.

Curr Drug Targets. 2010 Nov;11(11):1375-85.

Radiation-induced myelosuppression remains a rate-limiting factor of radiotherapy and chemotherapy. Therefore, hematological targets of radiation damage are of great significance for radiation oncology and normal tissue injury and protection. Protection of hematopoietic stem and progenitor cells is pivotal. In order to develop therapeutic targets, it is necessary to understand the mechanisms of stem cell renewal and differentiation. Recent advances in the molecular pathology of hematopoietic stem cells indicate a fine balance between various extrinsic and intrinsic signaling pathways in preserving the self-renewal and proliferative capacity of stem cells. Extrinsic signaling involves a microenvironment niche factors such as neighboring stromal cells, osteoblasts, and adipocytes secreting cytokines, chemokines, and metalloproteinases; intrinsic regulation involves Wnt/hedgehog/Notch signaling, DNA damage-induced epigenetic alterations, telomere shortening, and early senescence. Various drugs including synthetic cytokine mimetics, cytokine stimulators, and DNA repair modulators are being tested as radioprotectants. Colony-stimulating factors are routinely used in clinics to treat neutropenia induced by chemotherapy and radiotherapy as well as to mobilize and expand progenitors used in autologous transplantation. However, toxicity has limited their use. The vitamin E isoforms gamma tocotrienol, a potent free radical scavenger that has displayed promising anticarcinogenic properties, was recently shown to protect bone marrow (BM) from radiation injury and to stimulate hematopoiesis in a murine model. This chapter focuses on the potential targets of radiation damage in BM and speculates on the mechanisms of protection by γ-tocotrienol and how these mechanisms can contribute to radioprotection in general and to protection of BM during chemotherapy and radiotherapy in particular.

Gamma-tocotrienol protects hematopoietic stem and progenitor cells in mice after total-body irradiation

Shilpa Kulkarni, Sanchita P. Ghosh, Merriline Satyamitra, Steven Mog, Kevin Hieber, Lyudmila Romanyukha, Kristen Gambles, Raymond Toles, Tzu-Cheg Kao, Martin Hauer-Jensenb and K. Sree Kumara

Radiat Res. 2010 Jun;173(6):738-47.

We analyzed the radioprotective effects of gamma-tocotrienol (GT3) on hematopoietic stem cells (HSCs) and progenitor cells (HPCs) in sublethally irradiated mice. Flow cytometry analysis indicated that radiation depleted HPCs (c-Kit+, Lin2) to 40% at days 2 and 4 after total-body irradiation (TBI) in all treatment groups. The HPC numbers in GT3-treated mice recovered almost completely (90%) at day 7 but remained depleted in vehicle-treated mice (30%) even at day 13 after TBI. An in vitro colony-forming assay on sorted HSCs (Lin2, Sca1+, c-Kit+) indicated that TBI reduced the number of colonies to 40% and 50% at day 17 and 60, respectively, in vehicle-treated groups compared to unirradiated controls (naive). GT3-treated irradiated mice maintained higher numbers of colonies (86% and 80% compared to naive mice), thereby preserving the selfrenewable capacity of HSCs. Histopathology of sternal bone marrow indicated more regenerative microfoci for myeloid cells and megakaryocytes and higher overall cellularity in GT3- treated mice compared to vehicle controls at days 7 and 13 after TBI. GT3 treatment also reduced the frequency of micronucleated erythrocytes significantly in irradiated mice. Our results demonstrate that GT3 protected hematopoietic tissue by preserving the HSCs and HPCs and by preventing persistent DNA damage.

A novel mechanism of natural vitamin E tocotrienol activity: Involvement of ERbeta signal transduction

Comitato R, Nesaretnam K, Leoni G, Ambra R, Canali R, Bolli A, Marino M, Virgili F.

Am J Physiol Endocrinol Metab. 2009 Aug;297(2):E427-37.

Vitamin E is a generic term used to indicate all tocopherol (TOC) and tocotrienol (TT) derivates. In the last few years, several papers have shown that a TT-rich fraction (TTRF) extracted from palm oil inhibits proliferation and induces apoptosis in a large number of cancer cells. However, the molecular mechanism(s) involved in TT action is still unclear. In the present study, we proposed for the first time a novel mechanism for TT activity that involves estrogen receptor (ER) signaling. In silico simulations and in vitro binding analyses indicated a high affinity of TTs for ERbeta but not for ERalpha. In addition, in ERbeta-containing MDA-MB-231 breast cancer cells, we demonstrated that TTs increase the ERbeta translocation into the nucleus, which in turn activates estrogen-responsive genes (MIC-1, EGR-1 and cathepsin D), as demonstrated by cell preincubation with the ER inhibitor ICI-182,780. Finally, we observed that TT treatment is associated with alteration of cell morphology, DNA fragmentation, and caspase-3 activation. Altogether, these experiments elucidated the molecular mechanism underling gamma- and delta-TT effects.

Read Full Article Here

Gamma-tocotrienol, a tocol antioxidant as a potent radioprotector

Ghosh SP, Kulkarni S, Hieber K, Toles R, Romanyukha L, Kao TC, Hauer-Jensen M, Kumar KS.

Int J Radiat Biol. 2009 Jul;85(7):598-606.

Purpose: To assess the radioprotective potential of gamma-tocotrienol.

Materials And Methods: To optimise its dose and time regimen, gamma-tocotrienol (GT3) was injected subcutaneously (SC) at different doses into male CD2F1 mice [LD(50/30) (lethal radiation dose that results in the mortality of 50% mice in 30 days) radiation dose of 8.6 Gy with vehicle]. The mice were given 10.5, 11 and 11.5 Gy cobalt-60 radiation, and 30-day survival-protection was determined. Time optimisation was done by SC administration of GT3 at different intervals before irradiation. Dose reduction factor (DRF) was determined by probit analysis using mortality as the end point at six radiation doses. Protection from radiation induced pancytopenia was determined by enumerating peripheral blood cells from mice given GT3 and irradiated at 7 Gy.

Results: At an optimal dose of 200 mg/kg given SC 24 h before irradiation, GT3 had a DRF of 1.29. GT3 accelerated the recovery of total white blood cells, neutrophils, monocytes, platelets, and reticulocytes in irradiated mice, compared to vehicle-injected, irradiated controls.

Conclusion: GT3 is a radioprotectant having a higher DRF than any other tocols. The protection it provides close to the gastro-intestinal range indicate that GT3 can be considered as an ideal radioprotectant meriting further drug development stages for the ultimate use in humans.