Development and Evaluation of Resveratrol, Vitamin E, and Epigallocatechin Gallate Loaded Lipid Nanoparticles for Skin Care Applications.

Chen J, Wei N, Lopez-Garcia M, Ambrose D, Lee J, Annelin C, Peterson T.

Eur J Pharm Biopharm. 2017 Apr 11. pii: S0939-6411(17)30452-6. doi: 10.1016/j.ejpb.2017.04.008. [Epub ahead of print]

Abstract

Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) have been studied as potential carriers for both dermal and transdermal drug delivery. SLN contain lipid droplets that are fully crystallized and have a highly-ordered crystalline structure. NLC are modified SLN in which the lipid phase contains both solid and liquid lipids at room temperature. SLN and NLC are thought to combine the advantages of polymeric particles, liposomes and emulsions. Therefore they provide high encapsulation percentages, better protection for incorporated actives and allow for control of desired release profile. In this work, Resveratrol, Vitamin E (VE), and Epigallocatechin Gallate (EGCG) all potent antioxidants known to provide protection to the skin, were formulated into lipid nanoparticles. Several different formulations were successfully developed and demonstrated high uniformity and stability. Both resveratrol and VE lipid nanoparticles provided effective protection of actives against UV induced degradation. However, lipid nanoparticles did not show protection from UV degradation for EGCG in this work. An active release study exhibited a sustained release of resveratrol over 70% after 24hrs. Skin penetration studies showed that lipid nanoparticles directionally improved the penetration of resveratrol through the stratum corneum. Our findings suggest that lipid nanoparticles are promising viable carriers for the delivery of resveratrol and VE to provide longlasting antioxidant benefits to the skin.

Read More

Gamma-tocopherol supplementation ameliorated hyper-inflammatory response during the early cutaneous wound healing in alloxan-induced diabetic mice.

Shin J, Yang SJ, Lim Y.

Exp Biol Med (Maywood). 2017 Mar;242(5):505-515. doi: 10.1177/1535370216683836. Epub 2016 Dec 13.

Abstract

Delayed wound healing is one of the major diabetic complications. During wound healing process, the early inflammatory stage is important for better prognosis. One of antioxidant nutrient, gamma-tocopherol (GT) is considered to regulate inflammatory conditions. This study investigated the effect of GT supplementation on mechanism associated with inflammation, oxidative stress, and apoptosis during early cutaneous wound healing in diabetic mice. Diabetes was induced by alloxan injection in ICR mice. All mice were divided into three groups: non-diabetic control mice (CON), diabetic control mice (DMC), and diabetic mice supplemented with GT (GT). After two weeks of GT supplementation, excisional wounds were made by biopsy punches (4 mm). Diabetic mice showed increases in fasting blood glucose (FBG) level, hyper-inflammatory response, oxidative stress, and delayed wound closure rate compared to non-diabetic mice. However, GT supplementation reduced FBG level and accelerated wound closure rate by regulation of inflammatory response-related proteins such as nuclear factor kappa B, interleukin-1β, tumor necrosis factor-α, and c-reactive protein, and oxidative stress-related markers including nuclear factor (erythroid derived 2)-like 2, NAD(P)H dehydrogenase quinone1, heme oxygenase-1, manganese superoxide dismutase, catalase and glutathione peroxidase and apoptosis-related markers such as sirtuin-1, peroxisome proliferator-activated receptor gamma coactivator 1- α, and p53 in diabetic mice. Taken together, GT would be a potential therapeutic to prevent diabetes-induced delayed wound healing by regulation of inflammatory response, apoptosis, and oxidative stress. Impact statement Gamma tocopherol has shown ameliorative effect on diabetic wound healing by regulation of inflammation, oxidative stress, and apoptosis demonstrated by nuclear factor kappa B, nuclear factor (erythroid derived 2)-like 2, and sirtuin-1.

Read More

Nanoencapsulation of coenzyme Q10 and vitamin E acetate protects against UVB radiation-induced skin injury in mice.

Pegoraro NS, Barbieri AV, Camponogara C, Mattiazzi J, Brum ES, Marchiori MC, Oliveira SM, Cruz L.

Colloids Surf B Biointerfaces. 2017 Feb 1;150:32-40. doi: 10.1016/j.colsurfb.2016.11.013. Epub 2016 Nov 9.

Abstract

This study aimed to investigate the feasibility of producing semisolid formulations based on nanocapsule suspensions containing the association of the coenzyme Q10 and vitamin E acetate by adding gellan gum (2%) to the suspensions. Furthermore, we studied their application as an alternative for the treatment of inflammation induced by ultraviolet B (UVB) radiation. For this, an animal model of injury induced by UVB-radiation was employed. All semisolids presented pH close to 5.5, drug content above 95% and mean diameter on the nanometric range, after redispersion in water. Besides, the semisolids presented non-Newtonian flow with pseudoplastic behavior and suitable spreadability factor values. The results also showed that the semisolid containing coenzyme Q10-loaded nanocapsules with higher vitamin E acetate concentration reduced in 73±8% the UVB radiation-induced ear edema. Moreover, all formulations tested were able to reduce inflammation parameters evaluated through MPO activity and histological procedure on injured tissue and the semisolids containing the nanoencapsulated coenzyme Q10 reduced oxidative parameters assessment through the non-protein thiols levels and lipid peroxidation. This way, the semisolids based on nanocapsules may be considered a promising approach for the treatment and prevention of skin inflammation diseases.

Read More

Enhanced effectiveness of tocotrienol-based nano-emulsified system for topical delivery against skin carcinomas.

Pham J, Nayel A, Hoang C, Elbayoumi T.

Drug Deliv. 2016 Jun;23(5):1514-24. doi: 10.3109/10717544.2014.966925.

Abstract

The potent anti-proliferative and pro-apoptotic actions of tocotrienols (T3) against cancer, but not normal tissues, have been hampered by their limited systemic bioavailabilty. Recent expansive development of diverse nanoemulsion (NE) vehicles emphasized their vast potential to improve the effective dosing of different clinical and experimental drugs of lipophilic nature, such as T3. The emphasis of the present work is to develop a pharmaceutically scalable, low-energy nano-emulsification approach for optimized incorporation of T3-rich palm oil (Tocomin®), possessing anticancer activity as a potential cutaneous delivery platform for adjunctive therapy of skin carcinomas, either alone or in combination with other chemotherapeutic agents. Different Tocomin®-NEs, obtained with different homogenization strategies, were screened based on physicochemical uniformity (droplet size, charge and polydispersity) and subjected to stress physical stability testing, along with chemical content analysis (≥90% Tocomin® – incorporation efficiency). Adopted hybrid nano-emulsification of Tocomin®, correlated with highest preservation of DPPH-radical scavenging capacity of active T3 in prototype formulation, Tocomin®-NE, which effectively permeated diffusion cell membranes 4-folds higher than propyleneglycol (PG)-admixed Tocomin® control. Against two different cell models of human cutaneous carcinoma, Tocomin®-hybrid NE demonstrated significantly stronger cytotoxic profiles (p ≤ 0.01), visible in both concentration- and time- dependent manners, with at least 5-folds lower IC50 values, compared to those estimated for the closest Tocomin®-control. The proposed hybrid nano-emulsified formulation of Tocomin® provides simple and stable delivery platform, for effective topical application against keratinocyte tumors.

Read More

Development and In Vitro Evaluation of Vitamin E-Enriched Nanoemulsion Vehicles Loaded with Genistein for Chemoprevention Against UVB-Induced Skin Damage.

Brownlow B, Nagaraj VJ, Nayel A, Joshi M, Elbayoumi T.

J Pharm Sci. 2015 Oct;104(10):3510-23.

Abstract

There is a great need for effective protection against cutaneous pathologies arising from chronic exposure to harmful solar UVB radiations. A promising pharmaceutical strategy to improve the efficacy of chemotherapeutic/preventative natural compounds (e.g., soy isoflavone Genistein, Gen) is to enhance their dermal delivery using nanoemulsion (NE) formulations. This report investigates the development of nanoemulsifiedtocotrienol(T3)-rich fraction of red palm oil (Tocomin®), to yield an optimal NE delivery system for dermal photoprotection (z-average size <150 nm, ζ-potential ≈ -30 mV, polydispersity index < 0.25). Physicochemical characterization and photostability studies indicate NE formulations utilizing surfactant mixture (Smix) of Solutol® HS-15 (SHS15) blended with vitamin E TPGS (TPGS) as cosurfactant was significantly superior to formulations that utilized Lutrol® F68 (LF68) as the cosurfactant. A ratio of 60:40 of SHS15-TPGS-NE was further identified as lead Tocomin® NE topical platform using in vitro pharmaceutical skin reactivity studies that assess cutaneous irritancy and cytotoxicity. Prototype Tocomin® NE loaded with the antiphotocarcinogenic molecule Gen (Gen-Tocomin® NE) showed slow-release profile in both liquid and cream forms. Gen-Tocomin® NE also showed excellent biocompatibility, and provided substantial UVB protection to cultured subcutaneous L929 fibroblasts, indicating the great potential of our Tocomin® NE warranting further prototype development as topical pharmaceutical platform for skin photoprotection applications.

Read More

Anti-melanogenic effects of δ-tocotrienol are associated with tyrosinase-related proteins and MAPK signaling pathway in B16 melanoma cells.

Ng LT, Lin LT, Chen CL, Chen HW, Wu SJ, Lin CC.

Tocotrienols are known to possess potent antioxidant, anticancer, and cholesterol lowering activities. Being able to rapidly penetrate the skin, these vitamin E isoforms have been explored for potential treatment against melanoma. This study aimed to elucidate the mechanism involved in the anti-melanogenic effects of δ-tocotrienol (δT3) in B16 melanoma cells. Results showed that at 20μM of δT3 significantly inhibited melanin formation and ROS generation. Treatment with δT3 also effectively suppressed the expression of melanogenesis-related proteins, including MC1R, MITF, TYRP-1, and TYRP-2. More importantly, we observed that the mitogen-activated protein kinase (MAPK) pathway was involved in mediating δT3’s inhibitory effect against melanin production. Specifically, δT3 treatment markedly induced the activation of extracellular signal-regulated kinases (ERK). The use of ERK activation inhibitor (PD98059) abrogated the δT3-mediated downregulation expression melanogenesis-related proteins and restored melanin production. Furthermore, siRNA targeting ERK effectively blocked the δT3-induced repression of tyrosinase and TYRP-1 expression. These results suggest that δT3’s inhibitory effect against melanogenesis is mediated by the activation of ERK signaling, thereby resulting in downstream repression of melanogenesis-related proteins and the subsequent melanin production. These data provide insight to δT3’s effect and the targeting of ERK signaling for treatment against melanogenesis.

Read more

Comparable down-regulation of TYR, TYRP1 and TYRP2 genes and inhibition of melanogenesis by tyrostat, tocotrienol-rich fraction and tocopherol in human skin melanocytes improves skin pigmentation.

Makpol S, Jam FA, Rahim NA, Khor SC, Ismail Z, Yusof YA, Wan Ngah WZ.

BACKGROUND AND OBJECTIVE:

Antioxidant has been recognized to inhibit UV-induced melanogenesis. This study aimed to elucidate the molecular mechanism of tyrostat, tocopherol and tocotrienol-rich fraction in inhibiting melanogenesis in human skin melanocytes.

MATERIALS AND METHODS:

Primary culture of melanocytes was exposed to repeated doses of 0.6 J/cm2 UVA for 6 days and treated with tyrostat, tocotrienol-rich fraction or tocopherol alone or in combination.

RESULTS:

UVA irradiation increased melanin content and tyrosinase activity and up-regulated TYR, TYRP1 and TYRP2 genes. Treatment with tyrostat, tocotrienol-rich fraction or tocopherol decreased melanin content and down-regulated TYR, TYRP1 and TYRP2 genes with decreased tyrosinase activity. Combined treatment exerted better effects as compared to treatment with single compound in decreasing the melanin content and down-regulating TYR, TYRP1 and TYRP2 genes. These findings indicated that tyrostat, tocotrienol-rich fraction and tocopherol inhibit melanogenesis by modulating the expression of genes involved in the regulation of melanin synthesis and inhibiting tyrosinase activity.

CONCLUSIONS:

Tyrostat, tocopherol and tocotrienol-rich fraction possessed anti-melanogenic properties and might be useful in improving skin pigmentation caused by UVA exposure.

Read more

Comparative effects of biodynes, tocotrienol-rich fraction, and tocopherol in enhancing collagen synthesis and inhibiting collagen degradation in stress-induced premature senescence model of human diploid fibroblasts.

Makpol S, Jam FA, Khor SC, Ismail Z, Mohd Yusof YA, Wan Ngah WZ.

Biodynes, tocotrienol-rich fraction (TRF), and tocopherol have shown antiaging properties. However, the combined effects of these compounds on skin aging are yet to be investigated. This study aimed to elucidate the skin aging effects of biodynes, TRF, and tocopherol on stress-induced premature senescence (SIPS) model of human diploid fibroblasts (HDFs) by determining the expression of collagen and MMPs at gene and protein levels. Primary HDFs were treated with biodynes, TRF, and tocopherol prior to hydrogen peroxide (H2O2) exposure. The expression of COL1A1, COL3A1, MMP1, MMP2, MMP3, and MMP9 genes was determined by qRT-PCR. Type I and type III procollagen proteins were measured by Western blotting while the activities of MMPs were quantified by fluorometric Sensolyte MMP Kit. Our results showed that biodynes, TRF, and tocopherol upregulated collagen genes and downregulated MMP genes (P < 0.05). Type I procollagen and type III procollagen protein levels were significantly increased in response to biodynes, TRF, and tocopherol treatment (P < 0.05) with reduction in MMP-1, MMP-2, MMP-3, and MMP-9 activities (P < 0.05). These findings indicated that biodynes, TRF, and tocopherol effectively enhanced collagen synthesis and inhibited collagen degradation and therefore may protect the skin from aging.

read more

Tocotrienol (Unsaturated Vitamin E) Suppresses Degranulation of Mast Cells and Reduces Allergic Dermatitis in Mice.

Tsuduki T, Kuriyama K, Nakagawa K, Miyazawa T.

In this study, we examined whether tocotrienol (T3) reduces allergic dermatitis in mice and suppresses degranulation of mast cells. First, allergic dermatitis was examined in the atopic dermatitis model NC/Nga mouse. Allergic dermatitis was induced using picryl chloride in mice with and without administration of T3 (1 mg/day/mouse). Increases in scratching behavior, dermal thickening, and the serum histamine level were greatly reduced in mice treated with T3, indicating that T3 reduces allergic dermatitis in vivo. Next, the effect of T3 on degranulation of mast cells was examined, since these cells release bioactive substances such as histamine. T3 significantly suppressed degranulation of mast cells and significantly reduced histamine release. The effect of T3 on protein kinase C (PKC) activity was also measured, since suppression of this activity may be associated with the mechanism underlying the antidegranulation effect of T3. T3 significantly suppressed PKC activity. Therefore, we conclude that T3 suppresses degranulation of mast cells and reduces allergic dermatitis in mice through reduction of PKC activity.

Read more

Tocotrienols enhance melanosome degradation through endosome docking/fusion proteins in B16F10 melanoma cells.

Choi B, Heo JH, Kwon HJ, Lee ES, Sohn S.

Food Funct. 2013 Sep 2. [Epub ahead of print]

SUMMARY

Vitamin E inhibits tyrosinase activity and acts as a melanogenesis inhibitor in epidermal melanocytes in vitro. However, there is no direct evidence indicating that melanosomes are degraded in lysosomes in the presence of vitamin E. To determine whether vitamin E-induced melanosome disintegration is related to the expression of endosome docking/fusion proteins in B16F10 melanoma cells, electron microscopy, reverse transcription-polymerase chain reaction (RT-PCR), and real-time PCR were used to observe the effects of tocomin (α-tocopherols and α,γ,δ-tocotrienols in palm oil) on B16F10 melanoma cells. Melanosomal integrity was lost in lysosomes of B16F10 melanoma cells when treated with tocomin, indicating that tocomin caused the degradation of melanosomes in the lysosomal compartment. RT-PCR and real-time PCR analysis demonstrated mRNA expression of tyrosinase and the endosome docking/fusion proteins (syntaxin7, Rab7, Vps11, Vps16, Vps33, Vps39, and Vps41). Expression of syntaxin7, Vps16, Vps33, and Vps41 mRNA increased significantly in cells treated with tocomin compared with that in controls. These results indicate that the tocomin-induced degradation of melanosomes in the lysosomal compartment occurs with an increase in endosome docking/fusion proteins (syntaxin7, Vps16, Vps33, and Vps41) in cultured B16F10 melanoma cells.

Read More