Postoperative Administration of Alpha-tocopherol Enhances Osseointegration of Stainless Steel Implants: An In Vivo Rat Model

Savvidis M, Papavasiliou K, Taitzoglou I, Giannakopoulou A, Kitridis D, Galanis N, Vrabas I, Tsiridis E.

Clin Orthop Relat Res. 2019 Nov 6. doi: 10.1097/CORR.0000000000001037.

Abstract

BACKGROUND:

Alpha-tocopherol, a well-known antioxidative agent, may have a positive effect on bone formation during the remodeling phase of secondary fracture healing. Fracture healing and osseointegration of implants share common biological pathways; hence, alpha-tocopherol may enhance implant osseointegration.

QUESTIONS/PURPOSES:

This experimental study in rats assessed the ability of alpha-tocopherol to enhance osseointegration of orthopaedic implants as determined by (1) pull-out strength and removal torque and (2) a histomorphological assessment of bone formation. In addition, we asked, (3) is there a correlation between the administration of alpha-tocopherol and a reduction in postoperative oxidative stress (as determined by malondialdehyde, protein carbonyls, reduced and oxidized glutathione and their ratio, catalase activity and total antioxidant capacity) that develops after implantation of an orthopaedic implant?

METHODS:

This blinded study was performed in study and control groups, each consisting of 15 young adult male Wistar rats. On Day 0, a custom-designed stainless-steel screw was implanted in the proximal metaphysis of both tibias of all rats. On Day 1, animals were randomized to receive either alpha-tocopherol (40 mg/kg once per day intraperitoneally) or saline (controls). Animals were treated according to identical perioperative and postoperative protocols and were euthanized on Day 29. All animals completed the study and all tibias were suitable for evaluation. Implant pullout strength was assessed in the right tibias, and removal torque and histomorphometric evaluations (that is, volume of newly formed bone surrounding the implant in mm, percentage of newly formed bone, percentage of bone marrow surrounding the implant per optical field, thickness of newly formed bone in μm, percentage of mineralized bone in newly formed bone, volume of mature newly formed bone surrounding the implant in mm and percentage of mineralized newly formed bone per tissue area) were performed in the left tibias. The plasma levels of alpha-tocopherol, malondialdehyde, protein carbonyls, glutathione, glutathione disulfide, catalase, and the total antioxidant capacity were evaluated, and the ratio of glutathione to oxidized glutathione was calculated.

RESULTS:

All parameters were different between the alpha-tocopherol-treated and control rats, favoring those in the alpha-tocopherol group. The pullout strength for the alpha-tocopherol group (mean ± SD) was 124.9 ± 20.7 newtons (N) versus 88.1 ± 12.7 N in the control group (mean difference -36.7 [95% CI -49.6 to -23.9]; p < 0.001). The torque median value was 7 (range 5.4 to 8.3) versus 5.2 (range 3.6 to 6 ) N/cm (p < 0.001). The newly formed bone volume was 29.8 ± 5.7 X 10 versus 25.2 ± 7.8 X 10 mm (mean difference -4.6 [95% CI -8.3 to -0.8]; p = 0.018), the percentage of mineralized bone in newly formed bone was 74.6% ± 8.7% versus 62.1% ± 9.8% (mean difference -12.5 [95% CI -20.2 to -4.8]; p = 0.003), the percentage of mineralized newly formed bone per tissue area was 40.3 ± 8.6% versus 34.8 ± 9% (mean difference -5.5 [95% CI -10.4 to -0.6]; p = 0.028), the glutathione level was 2 ± 0.4 versus 1.3 ± 0.3 μmol/g of hemoglobin (mean difference -0.6 [95% CI -0.9 to -0.4]; p < 0.001), the median glutathione/oxidized glutathione ratio was 438.8 (range 298 to 553) versus 340.1 (range 212 to 454; p = 0.002), the catalase activity was 155.6 ± 44.6 versus 87.3 ± 25.2 U/mg Hb (mean difference -68.3 [95% CI -95.4 to -41.2]; p < 0.001), the malondialdehyde level was 0.07 ± 0.02 versus 0.14 ± 0.03 μmol/g protein (mean difference 0.07 [95% CI 0.05 to 0.09]; p < 0.001), the protein carbonyl level was 0.16 ± 0.04 versus 0.27 ± 0.08 nmol/mg of protein (mean difference -0.1 [95% CI 0.05 to 0.15]; p = 0.002), the alpha-tocopherol level was 3.9 ± 4.1 versus 0.9 ± 0.2 mg/dL (mean difference -3 [95% CI -5.2 to -0.7]; p = 0.011), and the total antioxidant capacity was 15.9 ± 3.2 versus 13.7 ± 1.7 nmol 2,2-diphenyl-1-picrylhydrazyl radical/g of protein (mean difference -2.1 [95% CI -4.1 to -0.18]; p = 0.008).

CONCLUSIONS:

These results using an in vivo rat model support that postoperatively administered alpha-tocopherol can enhance the osseointegration of an orthopaedic implant, although a cause and effect relationship between the administration of alpha-tocopherol and a reduction in postoperative stress cannot be securely established.

CLINICAL RELEVANCE:

These findings suggest that postoperative administration of alpha-tocopherol is a promising approach to enhance osseointegration of orthopaedic implants in patients. Further studies with different animal models and/or different implants and those evaluating the alpha-tocopherol dose response are needed before performing clinical trials that will examine whether these promising, preliminary results can be extrapolated to the clinical setting as well.

Read More

Therapeutic effect of Vitamin E in preventing bone loss: An evidence-based review

Nazrun Shuid A, Das S, Mohamed IN

Int J Vitam Nutr Res. 2019 Nov;89(5-6):357-370. doi: 10.1024/0300-9831/a000566.

Abstract

The present review explored the anti-inflammatory and immunomodulatory properties of vitamin E, which has protective action against osteoporosis. A systematic review of the literature was conducted to identify the published bone studies on vitamin E. The studies included inflammatory or immunology-related parameters. Medline and Scopus databases were searched for relevant studies published from 2005 till 2015. Research articles published in English and confined to the effect of vitamin E on bone were included. It is pertinent to mention that these studies took into consideration inflammatory or immunology parameters including interleukin (IL)-1, IL-6, receptor activator of nuclear factor kappa-B ligand (RANKL), inducible nitric oxide synthases (iNOS), serum amyloid A (SAA), e-selection and high-sensitivity C-reactive protein (hs-CRP). An extended literature search yielded 127 potentially relevant articles with seven articles meeting the inclusion and exclusion criteria. Another recent article was added with the total number accounting to eight. All these included literature comprised five animal studies, one in-vitro study and two human studies. These studies demonstrated that vitamin E, especially tocotrienol, was able to alleviate IL-1, IL-6, RANKL, iNOS and hs-CRP levels in relation to bone metabolism. In conclusion, vitamin E exerts its anti-osteoporotic actions via its anti-inflammatory and immunomodulatory effects.

Read More

Bone Mineral Density in Premenopausal Women Is Associated with the Dietary Intake of α-Tocopherol: A Cross-Sectional Study

Odai T, Terauchi M, Hirose A, Kato K, Miyasaka N

Nutrients. 2019 Oct 15;11(10). pii: E2474. doi: 10.3390/nu11102474.

Abstract

This study aimed to investigate the relationship between the consumption of various nutrients and bone mineral density (BMD) in middle-aged women. This cross-sectional survey was conducted based on the clinical records of 157 women aged 38-76. Their lumbar spine BMD was measured with dual-energy X-ray absorptiometry and dietary habits were assessed with the brief-type self-administered diet history questionnaire. Participants were divided into premenopausal (n = 46) and postmenopausal (n = 111) groups and the correlation between the BMD Z-score (Z-score) and the intakes of 43 nutrients was investigated separately for each group. In premenopausal women, the daily intake of ash, calcium, and α-tocopherol was positively correlated with the Z-score (Pearson’s correlation coefficient, R = 0.31, 0.34, 0.33, p = 0.037, 0.020, 0.027, respectively). When dividing the consumption of ash, calcium, and α-tocopherol into low, middle, and high tertiles, the Z-score significantly differed only between the α-tocopherol tertiles. After adjustment for age, body mass index, and lifestyle factors, daily intake of α-tocopherol remained significantly associated with the Z-score (regression coefficient = 0.452, p = 0.022). No nutrient was found to be significantly correlated with the Z-score in postmenopausal women. Increase in the intake of α-tocopherol could help maintain bone mass in premenopausal women.

Read More

The Effects of Tocotrienol on Bone Peptides in a Rat Model of Osteoporosis Induced by Metabolic Syndrome: The Possible Communication between Bone Cells

Wong SK, Chin KY, Ima-Nirwana S

Int J Environ Res Public Health. 2019 Sep 9;16(18). pii: E3313. doi: 10.3390/ijerph16183313.

Abstract

A positive association between metabolic syndrome (MetS) and osteoporosis has been demonstrated in previous animal studies. The mechanisms of MetS in orchestrating the bone remodelling process have traditionally focused on the interactions between mature osteoblasts and osteoclasts, while the role of osteocytes is unexplored. Our earlier studies demonstrated the bone-promoting effects of tocotrienol using a rat model of osteoporosis induced by MetS. This study aimed to investigate the expression of osteocyte-derived peptides in the bone of rats with MetS-induced osteoporosis treated with tocotrienol. Age-matched male Wistar rats (12-week-old; n = 42) were divided into seven experimental groups. Two groups served as the baseline and normal group, respectively. The other five groups were fed with a high-carbohydrate high-fat (HCHF) diet to induce MetS. The five groups of HCHF animals were treated with tocopherol-stripped corn oil (vehicle), annatto tocotrienol (60 and 100 mg/kg), and palm tocotrienol (60 and 100 mg/kg) starting from week 8. At the end of the study, the rats were sacrificed and their right tibias were harvested. Protein was extracted from the metaphyseal region of the proximal right tibia and levels of bone peptides, including osteoprotegerin (OPG), soluble receptor activator of nuclear factor-kappa B ligand (sRANKL), sclerostin (SOST), Dickkopf-related protein 1 (DKK-1), fibroblast growth factor-23 (FGF-23), and parathyroid hormone (PTH), were measured. The vehicle-treated animals displayed higher levels of sRANKL, SOST, DKK-1, FGF-23, and PTH as compared to the normal animals. Oral supplementation of annatto and palm tocotrienol (60 and 100 mg/kg) reduced the levels of sRANKL and FGF-23 in the HCHF animals. Only 100 mg/kg annatto and palm tocotrienol lowered SOST and DKK-1 levels in the HCHF animals. In conclusion, tocotrienol exerts potential skeletal-promoting benefit by modulating the levels of osteocytes-derived bone-related peptides.

Read More

Effects of pentoxifylline and tocopherol on a rat-irradiated jaw model using micro-CT cortical bone analysis

Nguyen TTH, Eo MY, Seo MH, Myoung H, Kim SM, Lee JH

Eur Arch Otorhinolaryngol. 2019 Aug 14. doi: 10.1007/s00405-019-05600-8. [Epub ahead of print]

Abstract

PURPOSE:

A combination of pentoxifylline (PTX) and tocopherol (TP) is believed to reduce chronic fibrosis and induce bone healing in osteoradionecrosis (ORN) of the mandible, but evidence of its therapeutic effectiveness for cortical bone is lacking. This study was designed to determine the effect of combined PTX and TP (PTX + TP) on mandibular cortical bone remodeling in a rat model of ORN, using micro-CT and histological analysis.

METHODS:

Forty-eight 8-week-old male Sprague-Dawley rats were randomly divided into irradiated (n = 40) and non-irradiated (n = 8) groups. Animals in the irradiated group were divided into four sub-groups, including PTX, TP, PTX + TP, and normal saline. Three weeks after irradiation, mandibular posterior tooth extraction was performed, and animals were sacrificed 7 weeks after irradiation. The mandibles were analyzed using micro-CT and histological evaluation.

RESULTS:

The alveolar bone height, cortical bone thickness, cortical bone volume, and total cortical bone surface of the PTX + TP group were significantly greater than those of other irradiated groups (p < 0.05). In 3D reconstructed images, the residual volumes of cortical and cancellous bone were inadequate in the irradiated groups.

CONCLUSION:

We found that a combination of PTX and TP improved quality and quantity of cortical bone in irradiated rat mandibles, thus providing supporting evidence of its utility as a treatment and prophylactic agent in ORN. We observed inadequate volumes of cortical and cancellous bone in ORN mandibles, suggesting that cortical bone could play an important role in further ORN studies.

Read More

The Effects of Annatto Tocotrienol Supplementation on Cartilage and Subchondral Bone in an Animal Model of Osteoarthritis Induced by Monosodium Iodoacetate

Chin KY, Wong SK, Japar Sidik FZ, Abdul Hamid J, Abas NH, Mohd Ramli ES, Afian Mokhtar S, Rajalingham S, Ima Nirwana S

Int J Environ Res Public Health. 2019 Aug 13;16(16). pii: E2897. doi: 10.3390/ijerph16162897.

Abstract

Osteoarthritis is a degenerative joint disease which primarily affects the articular cartilage and subchondral bones. Since there is an underlying localized inflammatory component in the pathogenesis of osteoarthritis, compounds like tocotrienol with anti-inflammatory properties may be able to retard its progression. This study aimed to determine the effects of oral tocotrienol supplementation on the articular cartilage and subchondral bone in a rat model of osteoarthritis induced by monosodium iodoacetate (MIA). Thirty male Sprague-Dawley rats (three-month-old) were randomized into five groups. Four groups were induced with osteoarthritis (single injection of MIA at week 0) and another served as the sham group. Three of the four groups with osteoarthritis were supplemented with annatto tocotrienol at 50, 100 and 150 mg/kg/day orally for five weeks. At week 5, all rats were sacrificed, and their tibial-femoral joints were harvested for analysis. The results indicated that the groups which received annatto tocotrienol at 100 and 150 mg/kg/day had lower histological scores and cartilage remodeling markers. Annatto tocotrienol at 150 mg/kg/day significantly lowered the osteocalcin levels and osteoclast surface of subchondral bone. In conclusion, annatto tocotrienol may potentially retard the progression of osteoarthritis. Future studies to confirm its mechanism of joint protection should be performed.

Read More

Vitamin E Promotes Bone Formation in a Distraction Osteogenesis Model

Akçay H, Kuru K, Tatar B, Şimşek F

J Craniofac Surg. 2019 Jun 20. doi: 10.1097/SCS.0000000000005685. [Epub ahead of print]

Abstract

The long consolidation period of distraction osteogenesis (DO) may lead to complications such as pain, infection, fracture, scar formation, malunion and delayed union. The aim of this study was to evaluate the effect of systemic Vitamin E application during mandibular DO on new bone regeneration in a rabbit model. 16 adult male 8 months old New Zealand rabbits underwent mandibular lengthening with a distractor for the study. After the latency period of 5 days, the distractor was activated at a rate of 0.5 mm/12 hours for 7 days. Experimental animals received 200 mg/kg injections of α-tocopherol intraperitoneally for 7 days starting with the operation. After the consolidation period of 30 days, rabbits were sacrificed. Lengthened mandibles were obtained and subjected to dual-energy X-ray absorptiometry (DXA), radiologic and histomorphometric analysis. Statistically, bone mineral density and bone mineral content values were found to be significantly higher in the experimental group than the control group during DXA analysis. Rabbits in the experimental group had statistically higher scores in terms of osteoblast, osteoclast, vessel numbers and newly formed bone area than the control group. Results of the present study showed that systemic Vitamin E application during DO may stimulate new bone formation in rabbits and thus results in shortened treatment time.

Read More

Vitamin E ameliorates alterations to the articular cartilage of knee joints induced by monoiodoacetate and diabetes mellitus in rats

Hassan WN, Bin-Jaliah I, Haidara MA, Eid RA, Heidar EHA, Dallak M, Al-Ani B

Ultrastruct Pathol. 2019 Jun 9:1-9. doi: 10.1080/01913123.2019.1627446. [Epub ahead of print]

Abstract

We recently reported an animal model of osteoarthritis (OA) induced by a combination of the chondrocyte glycolysis inhibitor, monoiodoacetate (MIA) and the agent that induces diabetes mellitus, streptozotocin (STZ). Here we investigated the potential protective effect of the antioxidant and anti-inflammatory agent, vitamin E against MIA+STZ-induced OA. Therefore, rats were either injected once with MIA (2 mg/50 μL) + 65 mg/kg STZ before being sacrificed after 8 weeks (model group) or were treated immediately after MIA+STZ injections with vitamin E (600 mg/kg; thrice a week) before being sacrificed after 8 weeks (treatment group). Using scanning and transmission electron microscopy examinations, we observed in the model group a substantial damage to the articular cartilage of the knee joint as demonstrated by the destruction of the chondrocytes, territorial matrix, disrupted lacunae, collagen fibers, and profound chondrocyte ultrastructural alterations such as degenerated chondrocyte, irregular cytoplasmic membrane, damaged mitochondria and rough endoplasmic reticulum, vacuolated cytoplasm, presence of lipid droplets and different sizes of lysosomes, which were substantially but not completely protected by vitamin E. H&E stained sections of knee joint articular cartilage showed that MIA+STZ induced damage to the chondrocyte and territorial matrix. Vitamin E also significantly (p < .05) inhibited MIA+STZ-induced blood levels of the inflammatory biomarkers, tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) that are known to be modulated in OA and diabetes. We conclude that vitamin E protects against MIA+STZ-induced knee joints injuries in rats, which is associated with the inhibition of biomarkers of inflammation.

Read More

The Relationship between Nutrient Patterns and Bone Mineral Density in Postmenopausal Women

Ilesanmi-Oyelere BL, Brough L, Coad J, Roy N, Kruger MC

Nutrients. 2019 Jun 3;11(6). pii: E1262. doi: 10.3390/nu11061262.

Abstract

In women, the menopausal transition is characterized by acid-base imbalance, estrogen deficiency and rapid bone loss. Research into nutritional factors that influence bone health is therefore necessary. In this study, the relationship between nutrient patterns and nutrients important for bone health with bone mineral density (BMD) was explored. In this cross-sectional analysis, 101 participants aged between 54 and 81 years were eligible. Body composition and BMD analyses were performed using dual-energy X-ray absorptiometry (DXA). Nutrient data were extracted from a 3-day diet diary (3-DDD) using Foodworks 9 and metabolic equivalent (MET-minutes) was calculated from a self-reported New Zealand physical activity questionnaire (NZPAQ). Significant positive correlations were found between intakes of calcium (p = 0.003, r = 0.294), protein (p = 0.013, r = 0.246), riboflavin (p = 0.020, r = 0.232), niacin equivalent (p = 0.010, r = 0.256) and spine BMD. A nutrient pattern high in riboflavin, phosphorus and calcium was significantly positively correlated with spine (p < 0.05, r = 0.197) and femoral neck BMD (p < 0.05, r = 0.213), while the nutrient pattern high in vitamin E, α-tocopherol, β-carotene and omega 6 fatty acids was negatively correlated with hip (p < 0.05, r = -0.215) and trochanter BMD (p < 0.05, r = -0.251). These findings support the hypothesis that a nutrient pattern high in the intake of vitamin E, α-tocopherol and omega 6 fatty acids appears to be detrimental for bone health in postmenopausal women.

Read More

The Molecular Mechanism of Vitamin E as a Bone-Protecting Agent: A Review on Current Evidence

Wong SK, Mohamad NV, Ibrahim N', Chin KY, Shuid AN, Ima-Nirwana S

Int J Mol Sci. 2019 Mar 22;20(6). pii: E1453. doi: 10.3390/ijms20061453.

Abstract

Bone remodelling is a tightly-coordinated and lifelong process of replacing old damaged bone with newly-synthesized healthy bone. In the bone remodelling cycle, bone resorption is coupled with bone formation to maintain the bone volume and microarchitecture. This process is a result of communication between bone cells (osteoclasts, osteoblasts, and osteocytes) with paracrine and endocrine regulators, such as cytokines, reactive oxygen species, growth factors, and hormones. The essential signalling pathways responsible for osteoclastic bone resorption and osteoblastic bone formation include the receptor activator of nuclear factor kappa-B (RANK)/receptor activator of nuclear factor kappa-B ligand (RANKL)/osteoprotegerin (OPG), Wnt/β-catenin, and oxidative stress signalling. The imbalance between bone formation and degradation, in favour of resorption, leads to the occurrence of osteoporosis. Intriguingly, vitamin E has been extensively reported for its anti-osteoporotic properties using various male and female animal models. Thus, understanding the underlying cellular and molecular mechanisms contributing to the skeletal action of vitamin E is vital to promote its use as a potential bone-protecting agent. This review aims to summarize the current evidence elucidating the molecular actions of vitamin E in regulating the bone remodelling cycle.

Read More