The use of 99mTc-phytate for assessment the protective effect of vitamin E against hepatotoxicity induced by methotrexat in rat

Amirfakhrian H, Abedi SM, Sadeghi H, Azizi S, Hosseinimehr SJ

Nucl Med Rev Cent East Eur. 2018 Jan 10. doi: 10.5603/NMR.a2018.0006. [Epub ahead of print]

Abstract

In this study, we investigated the protective effect of vitamin E against methotrexate (MTX)-induced hepatotoxicity by quantitative liver 99mTc-phytate uptake and liver imaging and to compare its effect with histopathology in rat. Rats were divided into five groups as control, solvent, Vit E (100 mg/kg), MTX (20 mg/kg), Vit E + MTX and. Vit E was intraperitoneally administrated for 17 days before MTX injection and continued for 4 days. 99mTc-phytate was injected through the tail of rats after the drug administration. The percentage of the injected dose per gram of liver and spleen tissues (%ID/g) was calculated. Liver imaging was obtained with gamma camera. In other experiment, liver of treated rats were assessed for histopathology. 99mTc-phytate uptake per gram tissue of the livers as %ID/g in control, solvent, MTX, Vit E, Vit E + MTX and MTX groups were 8.99%  1.37, 8.53%  2.91, 8.65%  3.84, 3.22%  1.09 and 8.38%  2.68. Vit E administration with MTX resulted in a significant increasing in the level of %ID/g. Vit E treatment improved the shape of live in planner image. Histophatological examinations showed a protective effect of Vit E against MTX-induced hepatoxicity in rats. The results showed that Vit E significantly attenuates the MTX-induced hepatotoxicity in rats, and 99mTc-phytate uptake in liver as well as liver image to be acceptable techniques for assessment of liver and spleen damages and/or their tissues protective effects in animal model.

Read More

Effects of phoxim-induced hepatotoxicity on SD rats and the protection of vitamin E.

Zhang J, Song W, Sun Y, Shan A

Environ Sci Pollut Res Int. 2017 Nov;24(32):24916-24927. doi: 10.1007/s11356-017-0104-1.

Abstract

Currently, public pay more attention to the adverse effect of organophosphate pesticides on human and animal health and on the environment in developing nations. Vitamin E may protect the hepatocyte and increase the function of liver. The study was to investigate the effects of phoxim-induced hepatotoxicity on Sprague Dawley (SD) rats and the protection of vitamin E. SD rats received by gavage 180 mg kg-1 (per body weight) of phoxim, 200 mg kg-1 (per body weight) of vitamin E, and phoxim + vitamin E. The results showed that exposure to phoxim elevated liver coefficient; glutamyl transpeptidase (GGT), aspartate aminotransferase, alkaline phosphatase, total bilirubin, total bile acid, and alanine aminotransferase in the serum; ROS in the liver; and the expression of p53, Bax, CYP2E1, ROS, caspase-9, caspase-8, and caspase-3, while phoxim caused a reduction of total protein, albumin, and cholinesterase in the serum; acetylcholinesterase, total antioxidant capacity, glutathione peroxidase, and glutathione in the liver; and the expression of Bcl-2. Vitamin Emodified the phoxim-induced hepatotoxicity by reducing the GGT in the serum, malondialdehyde in the liver, and the expression of CYP2E1 significantly. There were no significant changes of globulin in the serum, the activity of catalase in the liver, as well as expression levels of Fas and Bad in the liver. Overall, subacute exposure to phoxim induced hepatic injury, oxidative stress damage, and cell apoptosis. Vitamin Emodified phoxim-induced hepatotoxicity slightly. And, vitamin E minimized oxidative stress damage and ultrastructural changes in rat hepatocytes notably.

Read More

Association of Vitamin E Levels with Metabolic Syndrome, and MRI-Derived Body Fat Volumes and Liver Fat Content.

Waniek S, di Giuseppe R, Plachta-Danielzik S, Ratjen I, Jacobs G, Koch M, Borggrefe J, Both M, Müller HP, Kassubek J, Nöthlings U, Esatbeyoglu T, Schlesinger S, Rimbach G, Lieb W

Nutrients. 2017 Oct 18;9(10). pii: E1143. doi: 10.3390/nu9101143.

Abstract

We aimed to relate circulating α- and γ-tocopherol levels to a broad spectrum of adiposityrelated traits in a cross-sectional Northern German study. Anthropometric measures were obtained, and adipose tissue volumes and liver fat were quantified by magnetic resonance imaging in 641 individuals (mean age 61 years; 40.6% women). Concentrations of α- and γ-tocopherol were measured using high performance liquid chromatography. Multivariable-adjusted linear and logistic regression were used to assess associations of circulating α- and γ-tocopherol/cholesterol ratio levels with visceral (VAT) and subcutaneous adipose tissue (SAT), liver signal intensity (LSI), fatty liver disease (FLD), metabolic syndrome (MetS), and its individual components. The α- tocopherol/cholesterol ratio was positively associated with VAT (β scaled by interquartile range (IQR): 0.036; 95%Confidence Interval (CI): 0.0003; 0.071) and MetS (Odds Ratio (OR): 1.83; 95% CI: 1.21-2.76 for 3rd vs. 1st tertile), and the γ-tocopherol/cholesterol ratio was positively associated with VAT (β scaled by IQR: 0.066; 95% CI: 0.027; 0.104), SAT (β scaled by IQR: 0.048; 95% CI: 0.010; 0.087) and MetS (OR: 1.87; 95% CI: 1.23-2.84 for 3rd vs. 1st tertile). α- and γ-tocopherol levels were positively associated with high triglycerides and low high density lipoprotein cholesterol levels (all Ptrend < 0.05). No association of α- and γ-tocopherol/cholesterol ratio with LSI/FLD was observed. Circulating vitamin E levels displayed strong associations with VAT and MetS. These observations lay the ground for further investigation in longitudinal studies.

Read More

Severe Alcoholic Hepatitis Effectively Treated with Vitamin E as an Add-on to Corticosteroids.

Miyashima Y, Shibata M, Honma Y, Matsuoka H, Hiura M, Abe S, Harada M

Intern Med. 2017 Oct 11. doi: 10.2169/internalmedicine.8767-16.

Abstract

A 49-year-old woman with a history of heavy alcohol drinking was admitted to our hospital due to jaundice and abdominal distention. A blood test showed leukophilia, mild hypoalbuminemia, hyperbilirubinemia, hepatobiliary injury and coagulopathy. Image studies showed an extremely enlarged fatty liver and splenomegaly. The Japan alcoholic hepatitis score and Maddrey’s discriminant function were 10 and 54 points, respectively. We diagnosed her with severe alcoholic hepatitis and treated her with corticosteroids, but her liver function did not improve. We therefore administered the vitamin E product tochopheryl acetate (150 mg/day) as an add-on therapy, after which her leukophilia, liver enzymes and coagulopathy improved immediately.

Read More

Effects of delta-tocotrienol on obesity-related adipocyte hypertrophy, inflammation and hepatic steatosis in high-fat-fed mice.

Allen L, Ramalingam L, Menikdiwela K, Scoggin S, Shen CL, Tomison MD, Kaur G, Dufour JM, Chung E, Kalupahana NS, Moustaid-Moussa N

J Nutr Biochem. 2017 Oct;48:128-137. doi: 10.1016/j.jnutbio.2017.07.003. Epub 2017 Jul 10.

Abstract

Inflammation is a major underlying cause for obesity-associated metabolic diseases. Hence, anti-inflammatory dietary components may improve obesity-related disorders. We hypothesized that delta-tocotrienol (δT3), a member of the vitamin E family, reduces adiposity, insulin resistance and hepatic triglycerides through its anti-inflammatory properties. To test this hypothesis, C57BL/6J male mice were fed a high-fat diet (HF) with or without supplementation of δT3 (HF+δT3) at 400 mg/kg and 1600 mg/kg for 14 weeks, and they were compared to mice fed a low-fat diet (LF) or HF supplemented with metformin as an antidiabetic control. Glucose tolerance tests were administered 2 weeks prior to the end of treatments. Histology, quantitative polymerase chain reaction and protein analyses were performed to assess inflammation and fatty acid metabolism in adipose and liver tissues. Significant improvements in glucose tolerance, and reduced hepatic steatosis and serum triglycerides were observed in δT3-supplemented groups compared to the HF group. Body and fat pad weights were not significantly reduced in HF+δT3 groups; however, we observed smaller fat cell size and reduced macrophage infiltration in their adipose tissues compared to other groups. These changes were at least in part mechanistically explained by a reduction of mRNA and protein expression of proinflammatory adipokines and increased expression of anti-inflammatory adipokines in HF+δT3 mice. Moreover, δT3 dose-dependently increased markers of fatty acid oxidation and reduced markers of fatty acid synthesis in adipose tissue and liver. In conclusion, our studies suggest that δT3 may promote metabolically healthy obesity by reducing fat cell hypertrophy and decreasing inflammation in both liver and adipose tissue.

Read More

Effects of phoxim-induced hepatotoxicity on SD rats and the protection of vitamin E.

Zhang J, Song W, Sun Y, Shan A

Environ Sci Pollut Res Int. 2017 Sep 16. doi: 10.1007/s11356-017-0104-1. [Epub ahead of print]

Abstract

Currently, public pay more attention to the adverse effect of organophosphate pesticides on human and animal health and on the environment in developing nations. Vitamin E may protect the hepatocyte and increase the function of liver. The study was to investigate the effects of phoxim-induced hepatotoxicity on Sprague Dawley (SD) rats and the protection of vitamin E. SD rats received by gavage 180 mg kg-1 (per body weight) of phoxim, 200 mg kg-1 (per body weight) of vitamin E, and phoxim + vitamin E. The results showed that exposure to phoxim elevated liver coefficient; glutamyl transpeptidase (GGT), aspartate aminotransferase, alkaline phosphatase, total bilirubin, total bile acid, and alanine aminotransferase in the serum; ROS in the liver; and the expression of p53, Bax, CYP2E1, ROS, caspase-9, caspase-8, and caspase-3, while phoxim caused a reduction of total protein, albumin, and cholinesterase in the serum; acetylcholinesterase, total antioxidant capacity, glutathione peroxidase, and glutathione in the liver; and the expression of Bcl-2. Vitamin Emodified the phoxim-induced hepatotoxicity by reducing the GGT in the serum, malondialdehyde in the liver, and the expression of CYP2E1 significantly. There were no significant changes of globulin in the serum, the activity of catalase in the liver, as well as expression levels of Fas and Bad in the liver. Overall, subacute exposure to phoxim induced hepatic injury, oxidative stress damage, and cell apoptosis. Vitamin Emodified phoxim-induced hepatotoxicity slightly. And, vitamin E minimized oxidative stress damage and ultrastructural changes in rat hepatocytes notably.

Read More

The Ameliorative Effects of a Tocotrienol-Rich Fraction on the AGE-RAGE Axis and Hypertension in High-Fat-Diet-Fed Rats with Metabolic Syndrome.

Cheng HS, Ton SH, Tan JBL, Abdul Kadir K

Nutrients. 2017 Sep 7;9(9). pii: E984. doi: 10.3390/nu9090984.

Abstract

The clinical value of tocotrienols is increasingly appreciated because of the unique therapeutic effects that are not shared by tocopherols. However, their effect on metabolic syndrome is not well-established. This study aimed to investigate the effects of a tocotrienol-rich fraction (TRF) from palm oil in high-fat-diet-treated rats. Male, post-weaning Sprague Dawley rats were provided high-fat (60% kcal) diet for eight weeks followed by a TRF (60 mg/kg) treatment for another four weeks. Physical, metabolic, and histological changes were compared to those on control and high-fat diets respectively. High-fat feeding for eight weeks induced all hallmarks of metabolic syndrome. The TRF reversed systolic and diastolic hypertension, hypercholesterolemia, hepatic steatosis, impaired antioxidant defense, and myeloperoxidase hyperactivity triggered by the high-fat diet. It also conferred an inhibitory effect on protein glycation to reduce glycated hemoglobin A1c and advanced glycation end products (AGE). This was accompanied by the suppression of the receptor for advanced glycation end product (RAGE) expression in the liver. The treatment effects on visceral adiposity, glycemic control, triglyceride level, as well as peroxisome proliferator-activated receptor α and γ expression were negligible. To conclude, treatment with a TRF exhibited protective effects on the cardiovascular and liver health in addition to the amelioration of plasma redox imbalance and AGE-RAGE activation. Further investigation as a therapy for metabolic syndrome is therefore worthwhile.

Read More

Emerging targets to relieve fat stress-induced liver diseases: UDCA, tocotrienol, -3 PUFAs, and IgY targeted NPC1L1 cholesterol transporter.

Cha JY, Park JM, Lee HJ, Bae JS, Han YM, Oh BC, Ko KH, Hahm KB.

Curr Pharm Des. 2017 Jul 14. doi: 10.2174/1381612823666170714124824. [Epub ahead of print]

Abstract

Fat stress-induced liver disease is a hepatic manifestation of metabolic syndrome initiated by excess fat accumulation and encompasses a wide spectrum of diseases from non-alcoholic fatty liver disease to non-alcoholic steatohepatitis, a precursor lesion progressing to more aggressive liver cirrhosis and hepatocellular carcinoma. Although the incidence of these fat stress-induced liver diseases is rapidly increasing worldwide in parallel with the growing epidemics of obesity and metabolic diseases, its exact pathogenesis is not well defined. Although obesity, sedentary life-style, altered dietary pattern, insulin resistance, altered intestinal barrier function, inflammatory cytokines, and oxidative stress have been acknowledged as contributing factors because of the indefinite pathogenesis of metabolic diseases, the only reliable treatment is lifestyle intervention composed of restrictive diet and exercise. Additionally, some existing medications such as pioglitazone and antioxidants such as vitamin E were reported to be effective; in this review, several novel agents especifically targeting non-alcoholic fatty liver disease pathogenesis under clinical trial will be introduced. These include an NPC1L1 blocker (ezetimibe), which significantly improved histological and symptomatic scores associated with steatohepatitis and fibrosis; clofibrate, phentoxyfylline, ursodeoxycholic acid, and tocopherol, all of which are prescribed to relieve fat stress; and additional IgY targeted NPC1L1, tocotrienol, ursodeoxycholic acid, and -3 polyunsaturated fatty acids, which are actively under investigation to confirm the safety of long-term use.

Read More

Chemical components, antioxidant potential and hepatoprotective effects of Artemisia campestris essential oil against deltamethrin-induced genotoxicity and oxidative damage in rats.

Saoudi M, Ncir M, Ben Ali M, Grati M, Jamoussi K, Allouche N, El Feki A.

Gen Physiol Biophys. 2017 Jul;36(3):331-342. doi: 10.4149/gpb_2016057.

Abstract

In the present study, we evaluated the antioxidant potential of Artemisia campestris essential oil (ACEO) and the possible protective effects against deltamethrin induced hepatic toxic effects. The ACEO showed radical scavenging activity with IC50 = 47.66 ± 2.51 µg/ml, ferric reducing antioxidant power (FRAP) potential (EC50 = 5.36 ± 0.77 µg/ml), superoxide scavenging activity (IC50 = 0.175 ± 0.007 µg/ml) and ˙OH scavenging activity (IC50 = 0.034 ± 0.007 µg/ml). The obtained results of phenolic profile demonstrated that phenolic compounds are the major contributor to the antioxidant activity of ACEO. GC-MS analysis revealed the presence of 61 components in which monoterpene hydrocarbons constitute the major fraction (38.85%). In in vivo study, deltamethrin exposure caused an increase of serum AST, ALT and ALP activities, hepatic malondialdehyde (MDA) (measured as TBARS) and conjugated dienes markers of lipid peroxidation (LPO), while antioxidant enzyme activities (SOD, CAT and GPx) decreased significantly. Furthermore, it induces DNA damage as indicated by DNA fragmentation accompanied with severe histological changes in the liver tissues. The treatment with vitamin E or ACEO significantly improved the hepatic toxicity induced by deltamethrin. It can be concluded that vitamin E and ACEO are able to improve the hepatic oxidative damage induced by deltamethrin. Therefore, ACEO is an important product in reducing the toxic effects of deltamethrin.

Read More

Nonalcoholic fatty liver disease impairs the cytochrome P-450-dependent metabolism of α-tocopherol (vitamin E).

Bartolini D, Torquato P, Barola C, Russo A, Rychlicki C, Giusepponi D, Bellezza G, Sidoni A, Galarini R, Svegliati-Baroni G, Galli F.

J Nutr Biochem. 2017 Jun 7;47:120-131. doi: 10.1016/j.jnutbio.2017.06.003. [Epub ahead of print]

Abstract

This study aims to investigate in in vivo and in vitro models of nonalcoholic fatty liver disease (NAFLD) the enzymatic metabolism of α-tocopherol (vitamin E) and its relationship to vitamin E-responsive genes with key role in the lipid metabolism and detoxification of the liver. The experimental models included mice fed a high-fat diet combined or not with fructose (HFD+F) and HepG2 human hepatocarcinoma cells treated with the lipogenic agents palmitate, oleate or fructose. CYP4F2 protein, a cytochrome P-450 isoform with proposed α-tocopherol ω-hydroxylase activity, decreased in HFD and even more in HFD+F mice liver; this finding was associated with increased hepatic levels of α-tocopherol and decreased formation of the corresponding long-chain metabolites α-13-hydroxy and α-13-carboxy chromanols. A decreased expression was also observed for PPAR-γ and SREBP-1 proteins, two vitamin E-responsive genes with key role in lipid metabolism and CYP4F2 gene regulation. A transient activation of CYP4F2 gene followed by a repression response was observed in HepG2 cells during the exposure to increasing levels of the lipogenic and cytotoxic agent palmitic acid; such gene repression effect was further exacerbated by the co-treatment with oleic acid and α-tocopherol and was also observed for PPAR-γ and the SREBP isoforms 1 and 2. Such gene response was associated with increased uptake and ω-hydroxylation of α-tocopherol, which suggests a minor role of CYP4F2 in the enzymatic metabolism of vitamin E in HepG2 cells. In conclusion, the liver metabolism and gene response of α-tocopherol are impaired in experimental NAFLD.

Read More