Abstract
In orthopedic healthcare, Total Hip Replacement (THR) is a common and effective solution to hip-related bone and joint diseases/fracture; however, corrosion of the hip implant and the release of degradation metal ions/particles can lead to early implant failure and pose potential toxicity risk for the surrounding tissues. The main objective of this work was to investigate the potential role of Vitamin E to minimize corrosion-related concerns from CoCrMo hip implants. The study focused on two questions (i) Can Vitamin E inhibit CoCrMo corrosion? and (ii) Does Vitamin E moderate the toxicity associated with the CoCrMo implant particles? In the study (i) the electrochemical experiments (ASTM G61) with different concentrations of Vitamin E (1, 2, 3 mg/ml against the control) were performed using normal saline and simulated synovial fluid (Bovine calf serum-BCS, 30 g/L protein, pH 7.4) as electrolytes. The polished CoCrMo disc (Ra 50 nm) was the working electrode. The findings suggested that both Vitamin E-Saline (45 ± 0.9%) and Vitamin E-BCS (91 ± 3%) solutions protected against implant corrosion at a Vitamin E concentration of 3 mg/ml, but Vitamin E-BCS showed protection at all Vitamin E (1-3 mg/ml) concentration levels. These results suggested that the Vitamin E and the protein present in the BCS imparted additive effects towards the electrochemical inhibition. In the study (ii) the role of Vitamin E in cytotoxicity inhibition was studied using a mouse neuroblastoma cell line (N2a) for CoCrMo particles and Cr ions separately. The CoCrMo particles were generated from a custom-built hip simulator. The alamarBlue assay results suggested that Vitamin E provides significant protection (85% and 75% proliferation) to N2a cells against CoCrMo particles and Cr ions, respectively at 1 μg/ml concentration, as compared to the control group. However, the results obtained from ROS expression and DNA fiber staining suggest that Vitamin E is only effective against CoCrMo degradation particles and not against Cr ions. In summary, the findings show that Vitamin E can minimize the corrosion processes and play a role in minimizing the potential toxicity associated with implants.