Tocotrienol is the most effective Vitamin E for reducing endothelial expression of adhesion molecules and adhesion to monocytes.

Theriault A, Chao JT, Gapor A.

Alpha-tocopherol and its esterified derivatives have been shown to be effective in reducing monocytic-endothelial cell adhesion. However, the effect of alpha-tocotrienol (alpha-T3) has not been characterized. In the present study, using human umbilical vein endothelial cells (HUVEC) as the model system, we examined the relative inhibitory effects of alpha-T3 and other vitamin E derivatives on cell surface adhesion molecule expression under TNF-alpha stimulation. Using enzyme-linked immunosorbent assay, we demonstrated that alpha-T3 markedly inhibited the surface expression of vascular cell adhesion molecule-1 in TNF-alpha activated HUVEC in a dose- and time-dependent manner. The optimal inhibition was observed at 25 micromol/l alpha-T3 within 24 h (77+/-5%) without cytotoxicity. In addition, the surface expression of intercellular adhesion molecule-1 and E-selectin were also reduced by 40+/-7 and 42+/-5%, respectively. In order to further evaluate the effects of alpha-T3 on the vascular endothelium, we investigated the ability of monocytes to adhere to endothelial cells. Interestingly, a 63+/-3% decrease in monocytic cell adherence was observed. Compared to alpha-tocopherol and alpha-tocopheryl succinate, alpha-T3 displayed a more profound inhibitory effect on adhesion molecule expression and monocytic cell adherence. This inhibitory action by alpha-T3 on TNF-alpha-induced monocyte adhesion was shown to be NF-kappaB dependent and was interestingly reversed with co-incubation with farnesol and geranylgeraniol, suggesting a role for prenylated proteins in the regulation of adhesion molecule expression. In summary, the above results suggest that alpha-T3 is a potent and effective agent in the reduction of cellular adhesion molecule expression and monocytic cell adherence.