Separations of lipid antioxidants, tocopherols (T) and tocotrienols (T3), on octylsilica (OS), octadecylsilica (ODS), phenylsilica, or silica were studied by capillary electrochromatography (CEC)-UV detection. The homologues and isomers of the vitamin E-active compounds were best separated with an OS column. CEC with an ODS column tended to yield broad peaks with poor resolution. Among the various mobile phases evaluated, [acetonitrile-methanol (64:36)]-[25 mM tris(hydroxymethyl)aminomethane, pH 8] (95:5) eluent systems produced the most satisfactory results. Under these conditions, a baseline separation of an 11-component mixture was obtained with elution order similar to that observed in reversed-phase HPLC: deltaT3 > (gamma+beta)T3 > alphaT3 > epsilonT > (delta+zeta2)T > (gamma+beta)T > alphaT > alphaT-acetate. CEC of the antioxidant acetates led to separations inferior to those of the parent compounds. Effects of CEC experimental variables (e.g., mobile phase solvents and buffers, stationary phases and electric field) on analyte separations were assessed in the context of resolution factors and retention factors.