Neuroprotective Properties of the Natural Vitamin E Alpha-Tocotrienol

Background And Purpose: The current work is based on our previous finding that in neuronal cells, nmol/L concentrations of alpha-tocotrienol(TCT), but not alpha-tocopherol (TCP), blocked glutamate-induced death by suppressing early activation of c-Src kinase and 12-lipoxygenase.

Methods: The single neuron microinjection technique was used to compare the neuroprotective effects of TCT with that of the more widely known TCP. Stroke-dependent brain tissue damage was studied in 12-Lox-deficient mice and spontaneously hypertensive rats orally supplemented with TCT.

Results: Subattomole quantity of TCT, but not TCP, protected neurons from glutamate challenge. Pharmacological as well as genetic approaches revealed that 12-Lox is rapidly tyrosine phosphorylated in the glutamate-challenged neuron and that this phosphorylation is catalyzed by c-Src. 12-Lox-deficient mice were more resistant to stroke-induced brain injury than their wild-type controls. Oral supplementation of TCT to spontaneously hypertensive rats led to increased TCT levels in the brain. TCT-supplemented rats showed more protection against stroke-induced injury compared with matched controls. Such protection was associated with lower c-Src activation and 12-Lox phosphorylation at the stroke site.

Conclusions: The natural vitamin E, TCT, acts on key molecular checkpoints to protect against glutamate- and stroke-induced neurodegeneration.

Read Full Article Here