Abstract
The aim of this study was to formulate and characterize α-tocopherol (α-T) and tocotrienol-rich fraction (TRF) entrapped in poly (lactide-co-glycolide) (PLGA) and chitosan covered PLGA (PLGA-Chi) based nanoparticles. The resultant nanoparticles were characterized and the effect of nanoparticles entrapment on the cellular uptake, antioxidant, and antiproliferative activity of α-T and TRF were tested. In vitro uptake studies in Caco2 cells showed that PLGA and PLGA-Chi nanoparticles displayed a greater enhancement in the cellular uptake of α-T and TRF when compared with the control without causing toxicity to the cells (p<0.0001). Furthermore, the cellular internalization of both PLGA and PLGA-Chi nanoparticles labeled with FITC was investigated by fluorescence microscopy; both types of nanoparticles were able to get internalized into the cells with reasonable amounts. However, PLGA-Chi nanoparticles showed significantly higher (3.5-fold) cellular uptake compared to PLGA nanoparticles. The antioxidant activity studies demonstrated that entrapment of α-T and TRF in PLGA and PLGA-Chi nanoparticles exhibited greater ability in inhibiting cholesterol oxidation at 48h compared to the control. In vitro antiproliferative studies confirmed marked cytotoxicity of TRF on MCF-7 and MDA-MB-231 cell lines when delivered by PLGA and PLGA-Chi nanoparticles after 48h incubation compared to control. In summary, PLGA and PLGA-Chi nanoparticles may be considered as an attractive and promising approach to enhance the bioavailability and activity of poorly water soluble compounds such as α-tocopherol and tocotrienols.