Different functions of vitamin E homologues in the various types of cell death induced by oxysterols

Atsuki Suzuki, Yasuomi Urano, Tomohisa Ishida, Noriko Noguchi

Free Radic Biol Med . 2021 Oct 12;176:356-365. doi: 10.1016/j.freeradbiomed.2021.10.008. Online ahead of print.


24(S)-Hydroxycholesterol (24S-OHC) and 25-hydroxycholesterol (25-OHC) are produced by cholesterol 24-hydroxylase and cholesterol 25-hydroxylase, respectively. The purpose of the present study was to determine the type of cell death induced by these oxysterols in neuronal cells, hepatic cells, and keratinocytes, and to elucidate the inhibitory effect of vitamin E homologues on various types of cell death. In human neuronal cells (SH-SY5Y cells), 24S-OHC and 25-OHC caused a cell death that was independent of caspase activation. We reported previously that the esterification of 24S-OHC by acyl-CoA:cholesterol acyltransferase 1 (ACAT1) and the resulting formation of a lipid droplet (LD)-like structure are responsible for the 24S-OHC-induced neuronal cell death. Here, we found that 25-OHC also induced ACAT1-mediated 25-OHC esterification and LD formation in neuronal cells. 25-OHC-induced cell death was inhibited by α-tocopherol (α-Toc) but not by α-tocotrienol (α-Toc3), as observed for 24S-OHC-induced cell death in SH-SY5Y cells. In human hepatic cells (HepG2 cells), these oxysterols caused a cell death that was caspase- and oxysterol-esterification-independent. This cell death was suppressed by both α-Toc and α-Toc3, suggesting the involvement of free-radical-mediated lipid peroxidation in the cell death induced by these oxysterols in hepatic cells. In human keratinocytes (HaCaT cells), these oxysterols caused a caspase-dependent but oxysterol-esterification-independent cell death that was inhibited by α-Toc but not by α-Toc3. These results suggest that α-Toc and α-Toc3 act as radical-scavenging antioxidants against oxysterol-induced cell death in the same way in hepatic cells, whereas their behavior is different in inhibition of cell death in neuronal cells and keratinocytes. Collectively, these results demonstrated that 24S-OHC and 25-OHC induced the same type of cell death in each of the cell types examined, and that α-Toc and α-Toc3 exerted different effects, depending on the type of cell death.

Read More

Vitamin E as an essential micronutrient for human health: Common, novel, and unexplored dietary sources

Fereidoon Shahidi, Ana Clara C Pinaffi-Langley, Jocelyn Fuentes, Hernán Speisky, Adriano Costa de Camargo

Free Radic Biol Med . 2021 Oct 2;176:312-321. doi: 10.1016/j.freeradbiomed.2021.09.025. Online ahead of print.


Vitamin E comprises a group of vitamers that includes tocopherols and tocotrienols. They occur in four homologues according to the number and position of methyl groups attached to the chromanol ring. Vitamin E, a liposoluble antioxidant, may participate as an adjuvant in the prevention and treatment of cardiovascular, neurological, and aging-related diseases. Furthermore, vitamin E has applications in the food industry as a natural additive. In this contribution, the most recent information on the dietary sources of vitamin E, including common, novel, and unexplored sources, is presented. Common edible oils, such as those of corn, olive, palm, rice bran, and peanut, represent the most prominent sources of vitamin E. However, specialty and underutilized oils such as those obtained from tree nuts, fruit seeds, and by-products, emerge as novel sources of this important micronutrient. Complementary studies should examine the tocotrienol content of vitamin E dietary sources to better understand the different biological functions of these vitamers.

Read More

Interactions between α-tocopherol and γ-oryzanol in oil-in-water emulsions

Ruru Liu, Ying Xu, Ming Chang, Ruijie Liu, Xingguo Wang

Food Chem . 2021 Sep 15;356:129648. doi: 10.1016/j.foodchem.2021.129648. Epub 2021 Mar 22.


The interaction between antioxidants is affected by many factors, such as concentration, ratio and system. In this study, different concentrations of α-tocopherol and γ-oryzanol showed antagonistic effect in the oil-in-water emulsion, and the distribution of α-tocopherol increased in aqueous phase after combined with γ-oryzanol. The concentration could affect the degree of antagonism. According to fluorescence quenching, cyclic voltammetry measurements and the oxidative decomposition of antioxidants during storage, the inhibitory effect of γ-oryzanol on the regeneration of α-tocopherol was proposed to be responsible for the antagonism. This work can provide suggestions for studying the mechanism of antioxidant interaction in emulsion system.

Read More

Bioactive Electrospun Fibers of Poly(ε-Caprolactone) Incorporating α-Tocopherol for Food Packaging Applications

Raluca P Dumitriu, Elena Stoleru, Geoffrey R Mitchell, Cornelia Vasile, Mihai Brebu

Molecules . 2021 Sep 10;26(18):5498. doi: 10.3390/molecules26185498.


Antioxidant activity is an important feature for food contact materials such as packaging, aiming to preserve freshness and retard food spoilage. Common bioactive agents are highly susceptible to various forms of degradation; therefore, protection is required to maintain functionality and bioavailability. Poly(ε-caprolactone) (PCL), a biodegradable GRAS labeled polymer, was used in this study for encapsulation of α-tocopherol antioxidant, a major component of vitamin E, in the form of electrospun fibers. Rheological properties of the fiber forming solutions, which determine the electrospinning behavior, were correlated with the properties of electrospun fibers, e.g., morphology and surface properties. Interactions through hydrogen bonds were evidenced between the two components. These have strong effect on structuration of macromolecular chains, especially at low α-tocopherol amounts, decreasing viscosity and elastic modulus. Intra-molecular interactions in PCL strengthen at high α-tocopherol amounts due to decreased solvation, allowing good structural recovery after cease of mechanical stress. Morphologically homogeneous electrospun fibers were obtained, with ~6 μm average diameter. The obtained fibers were highly hydrophobic, with fast release in 95% ethanol as alternative simulant for fatty foods. This induced good in vitro antioxidant activity and significant in vivo reduction of microbial growth on cheese, as determined by respirometry. Therefore, the electrospun fibers from PCL entrapping α-tocopherol as bioactive agent showed potential use in food packaging materials.

Read More

Clarification of the Complexation Behaviour of 2,6-di-O-Methylated β-Cyclodextrin and Vitamin E and Radical Scavenging Ability of the Complex in Aqueous Solution

Shigesaburo Ogawa, Haruka Katsuragi, Katsuya Iuchi, Setsuko Hara

J Oleo Sci . 2021 Sep 8. doi: 10.5650/jos.ess21064. Online ahead of print.


The precise understanding of the behaviour of vitamin E (α-tocopherol; Toc) complexed with cyclodextrin (CD) additives in aqueous solution is a fundamental issue for further development of their aqua-related biological applications. In this study, the solubilisation and complexation behaviours of Toc with methyl-substituted CD derivatives and the radical scavenging ability of the resulting complexes were precisely investigated in water media. Several problems were encountered upon pre-dissolving Toc in an organic solvent prior to the addition to the water media, such as enhancement of the dispersibility and decrease in the complexation capacity. Additionally, dispersions were obtained in some cases when mixing CD and Toc even in the absence of an organic solvent; therefore, to perform the measurements, a transparent solution was prepared via filtration with a nanopore filter. Consequently, unexpectedly, the addition of certain CD methylated derivatives did not always enhance the solubility of Toc significantly. However, 2,6-di-O-methylated β-CD (2,6-DMCD) formed a water-soluble inclusion complex with Toc, effectively enhancing its solubility. A phase solubility study indicated the formation of 1:2 or 1:3 Toc/CD inclusion complexes, and the interaction of 2,6-DMCD with both the chromanol head and the phytol chain of Toc was revealed by 2D ROESY nuclear magnetic resonance analysis. The interaction between 2,6-DMCD and the chromanol head was also confirmed for a 2,6-DMCD-2,2,5,7,8-pentamethyl-6-chromanol inclusion complex. Additionally, a rapid scavenging effect for molecularly dissolved Toc was demonstrated even in a system comprising a chromanol head directly encapsulated by CD. Hence, this work elucidated the precise complexation and radical scavenging ability of 2,6-DMCD-Toc in an aqueous solution, which paves the way for its biological applications.

Read More

The effects of vitamin E on colistin-induced nephrotoxicity in treatment of drug-resistant gram-negative bacterial infections: A randomized clinical trial

Maryam Samsami, Minoosh Shabani, Mohammadreza Hajiesmaeili, Maria Tavakoli-Ardakani, Seyed Hossein Ardehali, Alireza Fatemi, Saghar Barati, Omid Moradi, Zahra Sahraei

J Infect Chemother . 2021 Aug;27(8):1181-1185. doi: 10.1016/j.jiac.2021.03.013. Epub 2021 Apr 15.


Introduction: Nephrotoxicity remains a major long-standing concern for colistin, and it is critical to find agents that can prevent it. The present study aims to investigate the effect of vitamin E on the prevention of colistin-induced nephrotoxicity based on its antioxidant and free radical scavenging properties.

Methods: A randomized clinical trial was designed for 52 patients taking colistin. These patients were categorized into two groups of equal size, receiving colistin or colistin plus vitamin E (α-Tocopherol). Vitamin E with doses of 400 units was administrated daily either orally or by a nasogastric tube if needed. The incidence of Acute Kidney Injury (AKI) and its duration was recorded based on RIFLE criteria.

Results: The Incidence of AKI based on RIFLE criteria was 42.3% and 46.2% in intervention and control groups, respectively. The analysis showed no significant difference in the prevalence of AKI for the two groups (P = 0.78). There was no significant difference in the duration of AKI neither (P = 0.83).

Conclusion: Although vitamin E is a powerful biological antioxidant, the effects of Vitamin E prophylaxis on colistin-induced nephrotoxicity was not taken into consideration in this study.

Read More

The plasma antioxidant vitamin status of the INTAPP cohort examined: The unsuspected importance of β-carotene and γ-tocopherol in preeclampsia

Jean-François Bilodeau, Amélie Gagné, Karine Greffard, François Audibert, William D Fraser, Pierre Julien

Pregnancy Hypertens . 2021 Aug;25:213-218. doi: 10.1016/j.preghy.2021.06.009. Epub 2021 Jun 12.


Objective: Examine the levels of plasma antioxidant vitamins before and during a treatment with placebo or vitamin E + C supplement to prevent preeclampsia (PE).

Study design: Per-protocol analysis of a subset group of pregnant women (n = 295) from the International Trial of Antioxidants for the Prevention of PE (INTAPP) randomized case-control study. Normotensive receiving placebo or vitamins (n = 115 and 87 respectively) were compared to gestational hypertension (GH) without proteinuria (n = 30 and 27) and PE (n = 21 and 15). Vitamin quantification was performed at 12-18, 24-26 and 32-34 weeks of gestation.

Main outcome measures: Coenzyme (Co) Q10, β-carotene and vitamins E (α and γ forms) plasma levels.

Results: Vitamin E + C supplementation was found to increase the α-tocopherol levels by 40% but was associated with a 57% decrease in the γ-tocopherol isoform for all study groups (p < 0.001). The β -carotene was lower in the PE than in the normotensive and GH groups (p < 0.001) while the level of CoQ10 remained unaffected.

Conclusions: A more personalized approach that target the suboptimal levels of specific antioxidants without disturbing the α/γ-tocopherol ratio could be a more successful approach to counteract oxidative stress in PE.

Read More

Vitamin E and selenium supplementation synergistically alleviate the injury induced by hydrogen peroxide in bovine granulosa cells

Meimei Wang, Yan Li, Adrian Molenaar, Qiufeng Li, Yufeng Cao, Yizhao Shen, Panliang Chen, Jinling Yan, Yanxia Gao, Jianguo Li

Theriogenology . 2021 Aug;170:91-106. doi: 10.1016/j.theriogenology.2021.04.015. Epub 2021 May 5.


Dairy cows are susceptible to reproductive disorders, which are thought to be associated with oxidative stress. In the study, we investigated the effects of vitamin E (VE) and selenium (Se) on the proliferation, apoptosis, and steroidogenesis in bovine ovarian granulosa cells under hydrogen peroxide (H2O2) – induced oxidative stress and elaborated the underlying mechanisms. Our results showed that VE or Se could stimulate the granulosa cell proliferation, possibly due to up-regulating the expression of CCND1 and decreasing the P21 levels under oxidative stress. VE or Se treatment also increased the secretion of estradiol (E2) and progesterone (P4), which could be owing to improving the expression of genes associated with steroidogenesis (StAR, HSD3β1, and CYP19A1) expression. VE or Se treatment down-regulated the apoptosis-related genes (BAX, CASP3) expression and decreased cell apoptosis. Furthermore, VE or Se treatment inhibited reactive oxidative species (ROS) and malondialdehyde (MDA) generation, increased total antioxidant capacity (T-AOC), and the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px). Additionally, VE or Se treatment also alleviated the endoplasmic reticulum stress, activated the nuclear factor erythroid 2-related factor 2 (NRF2), and up-regulated the expression of its downstream genes, including NQO1, HO-1, GCLM, GCLC. More importantly, compared with either VE or Se treatment alone, their combined treatment showed a better protective effect against oxidative damage. Overall, our results indicated that VE and Se synergistically stimulated the granulosa cell proliferation and steroidogenesis, decreased cell apoptosis, mitigated the endoplasmic reticulum stress by activating the NRF2 signal pathway.

Read More

In vitro antiaging evaluation of sunscreen formulated from nanostructured lipid carrier and tocotrienol-rich fraction

Chee Chin Chu, Zafarizal Aldrin Bin Azizul Hasan, Chin Ping Tan, Kar Lin Nyam

J Pharm Sci . 2021 Aug 20;S0022-3549(21)00423-8. doi: 10.1016/j.xphs.2021.08.020.


Chronic exposure to ultraviolet (UV) radiation leads to photoaging. There is a tremendous rise in products having a dual activity of photoprotection and antiaging. In vitro analysis in dermal fibroblasts and their biological mechanisms involved are critical to determine antiaging potential. The study aimed to investigate the antiaging potential of sunscreen formulated from nanostructured lipid carrier and tocotrienol-rich fraction (NLC-TRF sunscreen). The antioxidant activity of the NLC-TRF sunscreen was evaluated by radical scavenging and hydrogen peroxide inhibition properties. Also, collagenase, elastase and matrix metalloproteinase-1 (MMP-1) inhibition activities, and type I collagen and elastin protein expression were studied. Quantitative real-time polymerase chain reaction (qPCR) was used to evaluate the mRNA expression of fibroblast growth factor (FGF), vascular endothelial growth factor (VEGF), transforming growth factor-β1 (TGF-β1), type I collagen (COL1A1), elastin (ELN), MMP-1, MMP-2, and tissue inhibitor matrix metalloproteinase-1 (TIMP-1). The results suggested that NLC-TRF sunscreen is effective in radical, anti-hydrogen peroxide, and collagenase, elastase and MMP-1 inhibition activities. Besides, a significant increase for type I collagen (3.47-fold) and elastin (2.16-fold) protein and fibroblast regeneration genes (FGF (2.12-fold), VEGF (1.91-fold), TGF-β1 (2.84-fold), TIMP-1 (1.42-fold), ELN (2.13-fold)) were observed after sample treatment. These findings support the therapeutic potential of NLC-TRF sunscreen in antiaging.

Read More

Vitamins E and C do not effectively inhibit low density lipoprotein oxidation by ferritin at lysosomal pH

Oluwatosin O Ojo, David S Leake

Free Radic Res . 2021 Aug 16;1-10. doi: 10.1080/10715762.2021.1964494. Online ahead of print.


Low density lipoprotein (LDL) might be oxidized by iron in the lysosomes of macrophages in atherosclerotic lesions. We have shown previously that the iron-storage proteinferritin can oxidize LDL at lysosomal pH. We have now investigated the roles of the most important antioxidant contained in LDL, α-tocopherol (the main form of vitamin E) and of ascorbate (vitamin C), a major water-soluble antioxidant, on LDL oxidation by ferritin at lysosomal pH (pH 4.5). We incubated LDL with ferritin at pH 4.5 and 37 °C and measured its oxidation by monitoring the formation of conjugated dienes at 234 n min a spectrophotometer. α-Tocopherol is well known to inhibit LDL oxidation at pH 7.4, but enrichment of LDL with α-tocopherol was unable to inhibit LDL oxidation by ferritin at pH 4.5. Ascorbate had a complex effect on LDL oxidation by ferritin at lysosomal pH and exhibited both antioxidant and pro-oxidant effects. It had no antioxidant effect on partially oxidized LDL, only a pro-oxidant effect. Ascorbate completely inhibited LDL oxidation by copper at pH 7.4 for a long period, but in marked contrast did not inhibit LDL oxidation by copper at lysosomal pH. Dehydroascorbate, the oxidation product of ascorbate, had a pronounced pro-oxidant effect on LDL incubated with ferritin at pH 4.5. The inability of α-tocopherol and ascorbate to effectively inhibit LDL oxidation by ferritin at lysosomal pH might help to explain why the large clinical trials with these vitamins failed to show protection against cardiovascular diseases.

Read More