Antioxidant effects of tocotrienols in patients with hyperlipidemia and carotid stenosis

Tomeo AC, Geller M, Watkins TR, Gapor A, Bierenbaum ML.

Lipids. 1995 Dec;30(12):1179-83.

Antioxidants may have a role in the prevention of atherosclerosis. In the present trial,  the antioxidant properties of Palm Vitee, a gamma-tocotrienol-, and alpha-tocopherol enriched fraction of palm oil, in patients with carotid atherosclerosis were investigated. Serum lipids, fatty acid peroxides, platelet aggregation and carotid artery stenosis were measured over an 18-month period in fifty patients with cerebrovascular disease. Change in stenosis was measured with duplex ultrasonography. Ultrasound scans were done at six months, twelve months, and yearly thereafter. Bilateral duplex ultrasonography revealed apparent carotid atherosclerotic regression in seven and progression in two of the 25 tocotrienol patients, while none of the control group exhibited regression and ten of 25 showed progression (P < 0.002). Serum thiobarbituric acid reactive substances, an ex vivo indicator of maximal platelet peroxidation, decreased in the treatment group from 1.08 +/- 0.70 to 0.80 +/- 0.55 microM/L (P < 0.05) after 12 mon, and in the placebo group, they increased nonsignificantly from 0.99 +/- 0.80 to 1.26 +/- 0.54 microM/L. Both tocotrienol and placebo groups displayed significantly attenuated collagen-induced platelet aggregation responses (P < 0.05) as compared with entry values. Serum total cholesterol, low density lipoprotein cholesterol, and triglyceride values remained unchanged in both groups, as did the plasma high density lipoprotein cholesterol values. These findings suggest that antioxidants, such as tocotrienols, may influence the course of carotid atherosclerosis.

Vitamins E and C, beta-carotene, and other carotenoids as antioxidants

Sies H, Stahl W.

Am J Clin Nutr. 1995 Dec;62(6 Suppl):1315S-1321S.

Tocopherols and tocotrienols (vitamin E), ascorbic acid (vitamin C), and the carotenoids react with free radicals, notably peroxyl radicals, and with singlet molecular oxygen (1O2), which is the basis for their function as antioxidants. RRR-alpha-Tocopherol is the major peroxyl radical scavenger in biological lipid phases such as membranes or low-density lipoproteins. Ascorbic acid is present in aqueous compartments (eg, cytosol, plasma, and other body fluids) and can reduce the tocopherol radical; it also has several metabolically important cofactor functions in enzyme reactions, especially hydroxylations. These micronutrients need to be regenerated on oxidation in the biological setting, hence the need for further coupling to nonradical reducing systems such as glutathione-glutathione disulfide, dihydrolipoate-lipoate, or NADPH-NADP+ and NADH-NAD+. Carotenoids, such as beta-carotene, lycopene, and some oxycarotenoids, eg, zeaxanthin and lutein, exert antioxidant functions in lipid phases by quenching 1O2 or free radicals. There are pronounced differences in tissue carotenoid patterns, extending also to the distribution between the all-trans and various cis isomers of the respective carotenoids. Physical quenching leaves the structure intact, so that in this mode the carotenoids do not require a regeneration reaction.

Tocotrienols from palm oil as potent inhibitors of lipid peroxidation and protein oxidation in rat brain mitochondria

Kamat JP, Devasagayam TP.

Neurosci Lett. 1995 Aug 11;195(3):179-82.

The tocotrienol-rich-fraction (TRF) from palm oil, being tried as a more economical and efficient substitute for alpha-tocopherol, significantly inhibited oxidative damage in vitro to both lipids and proteins in rat brain mitochondria induced by ascorbate-Fe2+, the free radical initiator azobis(2-amidopropane)dihydrochloride (AAPH) and photosensitisation. The observed inhibitory effect was both time- and concentration-dependent. At a low concentration of 5 microM, TRF can significantly inhibit oxidative damage to both lipids and proteins. The inhibitory effect of TRF seems to be mainly due to gamma-tocotrienol and to a lesser extent alpha- and delta-tocotrienols. TRF was significantly more effective than alpha-tocopherol. This fraction from palm oil can be considered a natural antioxidant supplement capable of protecting the brain against oxidative damage and thereby from the ensuing adverse alterations.

Gamma-Tocotrienol as a hypocholesterolemic and antioxidant agent in rats fed atherogenic diets

Watkins T, Lenz P, Gapor A, Struck M, Tomeo A, Bierenbaum M.

Lipids. 1993 Dec;28(12):1113-8.

This study was designed to determine whether incorporation of gamma-tocotrienol or alpha-tocopherol in an atherogenic diet would reduce the concentration of plasma cholesterol, triglycerides and fatty acid peroxides, and attenuate platelet aggregability in rats. For six weeks, male Wistar rats (n = 90) were fed AIN76A semisynthetic test diets containing cholesterol (2% by weight), providing fat as partially hydrogenated soybean oil (20% by weight), menhaden oil (20%) or corn oil (2%). Feeding the ration with menhaden oil resulted in the highest concentrations of plasma cholesterol, low and very low density lipoprotein cholesterol, triglycerides, thiobarbituric acid reactive substances and fatty acid hydroperoxides. Consumption of the ration containing gamma-tocotrienol (50 mg/kg) and alpha-tocopherol (500 mg/kg) for six weeks led to decreased plasma lipid concentrations. Plasma cholesterol, low and very low density lipoprotein cholesterol, and triglycerides each decreased significantly (P < 0.001). Plasma thiobarbituric acid reactive substances decreased significantly (P < 0.01), as did the fatty acid hydroperoxides (P < 0.05), when the diet contained both chromanols. Supplementation with gamma-tocotrienol resulted in similar, though quantitatively smaller, decrements in these plasma values. Plasma alpha-tocopherol concentrations were lowest in rats fed menhaden oil without either chromanol. Though plasma alpha-tocopherol did not rise with gamma-tocotrienol supplementation at 50 mg/kg, gamma-tocotrienol at 100 mg/kg of ration spared plasma alpha-tocopherol, which rose from 0.60 +/- 0.2 to 1.34 +/- 0.4 mg/dL (P < 0.05). The highest concentration of alpha-tocopherol was measured in plasma of animals fed a ration supplemented with alpha-tocopherol at 500 mg/kg.

Structural and dynamic membrane properties of alpha-tocopherol and alpha-tocotrienol: Implication to the molecular mechanism of their antioxidant potency

Suzuki YJ, Tsuchiya M, Wassall SR, Choo YM, Govil G, Kagan VE, Packer L.

Biochemistry. 1993 Oct 12;32(40):10692-9.

d-alpha-Tocopherol and d-alpha-tocotrienol are two vitamin E constituents having the same aromatic chromanol “head” but different hydrocarbon “tails”. alpha-Tocotrienol has been shown to be more potent in protecting against free radical-induced oxidative stress than alpha-tocopherol. Simple models of phospholipid membrane systems were used to investigate the mechanism of the antioxidant potency of alpha-tocotrienol in terms of its effects on membrane order and reorientation dynamics. Chemiluminescence and fluorescence measurements demonstrated that alpha-tocotrienol exhibits significantly greater peroxyl radical scavenging potency than alpha-tocopherol in phosphatidylcholine liposomes, whereas both antioxidants have identical activity in hexane. This suggests that the antioxidant potency of alpha-tocotrienol requires the membrane environment. When alpha-tocopherol and alpha-tocotrienol were examined for their effects on phospholipid molecular order using conventional ESR spin labeling with 5- and 16-position-labeled doxylstearic acid, although both vitamin E constituents disordered the gel phase and stabilized the liquid-crystalline phase, no differences were observed between the effects of the two compounds. A slightly greater increase (19% vs 15%) in ordering of the liquid-crystalline state due to alpha-tocopherol, however, was discerned in noninvasive 2H NMR experiments. The difference is most noticeable near C10-C13 positions of the phospholipid chain, possibly suggesting alpha-tocotrienol is located closer to the membrane surface. Saturation-transfer ESR, furthermore, revealed that on the time scale tau c = 10(-7)-10(-3) s the rates of rotation about the long molecular axis and of the wobbling motion of the axis are modified to differing extents by the two forms of the vitamin E

Comparative antioxidant activity of tocotrienols and other natural lipid-soluble antioxidants in a homogeneous system, and in rat and human lipoprotein

Suarna C, Hood RL, Dean RT, Stocker R.

Biochim Biophys Acta. 1993 Feb 24;1166(2-3):163-70.

The antioxidant activity of tocotrienols toward peroxyl radicals was compared with that of other natural lipid-soluble antioxidants in three different systems by measuring the temporal disappearance of antioxidants and the formation of lipid hydroperoxides. In homogeneous solution, the initial rates of consumption of the various antioxidants, assessed by competition experiments between pairs of antioxidants for radicals, decreased in the order: ubiquinol-10 approximately ubiquinol-9 > alpha-tocopherol approximately alpha-tocotrienol > beta-carotene approximately lycopene > gamma-tocopherol approximately gamma-tocotrienol. Following in vitro incubation of human plasma with alpha-tocotrienol, this form of vitamin E was present in all classes of lipoproteins isolated from the supplemented plasma. Dietary supplementation of rats and humans with a tocotrienol-rich preparation resulted in a dose-dependent appearance of alpha- and gamma-tocotrienols in plasma and all circulating lipoproteins, respectively. Exposure of such enriched rat plasma to aqueous peroxyl radicals resulted in simultaneous consumption of the alpha- and then gamma-isomers of vitamin E. The sequence of radical-induced consumption of antioxidants in freshly isolated, in vitro and in vivo tocotrienol-enriched low density lipoprotein (LDL) was again ubiquinol-10 > alpha-tocotrienol approximately alpha-tocopherol > carotenoids > gamma-tocopherol approximately gamma-tocotrienol. Under conditions where radicals were generated at constant rates, the rate of lipid hydroperoxide formation in LDL was not constant. It proceeded in at least three stages separated by the phase of ubiquinol-10 consumption and, subsequently, that of alpha-tocopherol/alpha-tocotrienol. Our results show that dietary tocotrienols become incorporated into circulating human lipoproteins where they react with peroxyl radicals as efficiently as the corresponding tocopherol isomers.

Vitamin E inhibits protein oxidation in skeletal muscle of resting and exercised rats

Reznick AZ, Witt E, Matsumoto M, Packer L.

Biochem Biophys Res Commun. 1992 Dec 15;189(2):801-6.

It is well known that exercise induces lipid peroxidation in skeletal muscle and that vitamin E prevents exercise-induced lipid damage. In this study we show for the first time, an increase in protein oxidation in skeletal muscle after a single bout of exercise, related to an exercise-induced decrease in lipophilic antioxidants, and substantial protection against both resting and exercise-induced protein oxidation by supplementation with various isomers (alpha-tocopherol, alpha-tocotrienol) of vitamin E.

Antioxidant functions of vitamins. Vitamins E and C, beta-carotene, and other carotenoids

Sies H, Stahl W, Sundquist AR.

Ann N Y Acad Sci. 1992 Sep 30;669:7-20

Tocopherols and tocotrienols (vitamin E) and ascorbic acid (vitamin C) as well as the carotenoids react with free radicals, notably peroxyl radicals, and with singlet molecular oxygen (1O2), this being the basis of their function as antioxidants. RRR-alpha-tocopherol is the major peroxyl radical scavenger in biological lipid phases such as membranes or low-density lipoproteins (LDL). L-Ascorbate is present in aqueous compartments (e.g. cytosol, plasma, and other body fluids) and can reduce the tocopheroxyl radical; it also has a number of metabolically important cofactor functions in enzyme reactions, notably hydroxylations. Upon oxidation, these micronutrients need to be regenerated in the biological setting, hence the need for further coupling to nonradical reducing systems such as glutathione/glutathione disulfide, dihydrolipoate/lipoate, or NADPH/NADP+ and NADH/NAD+. Carotenoids, notably beta-carotene and lycopene as well as oxycarotenoids (e.g. zeaxanthin and lutein), exert antioxidant functions in lipid phases by free-radical or 1O2 quenching. There are pronounced differences in tissue carotenoid patterns, extending also to the distribution between the all-trans and various cis isomers of the respective carotenoids. Antioxidant functions are associated with lowering DNA damage, malignant transformation, and other parameters of cell damage in vitro as well as epidemiologically with lowered incidence of certain types of cancer and degenerative diseases, such as ischemic heart disease and cataract. They are of importance in the process of aging. Reactive oxygen species occur in tissues and cells and can damage DNA, proteins, carbohydrates, and lipids. These potentially deleterious reactions are controlled in part by antioxidants that eliminate prooxidants and scavenge free radicals. Their ability as antioxidants to quench radicals and 1O2 may explain some anticancer properties of the carotenoids independent of their provitamin A activity, but other functions may play a role as well. Tocopherols are the most abundant and efficient scavengers of peroxyl radicals in biological membranes. The water-soluble antioxidant vitamin C can reduce tocopheroxyl radicals directly or indirectly and thus support the antioxidant activity of vitamin E; such functions can be performed also by other appropriate reducing compounds such as glutathione (GSH) or dihydrolipoate. The biological efficacy of the antioxidants is also determined by their biokinetics.

Interactions among antioxidants in health and disease: Vitamin E and its redox cycle

Packer L.

Proc Soc Exp Biol Med. 1992 Jun;200(2):271-6.

Probably most diseases at some point during their course involve free radical reactions in tissue injury. In some cases, free radical reactions may be involved in multiple sites and at different stages of a chronic disease. So, both acute and degenerative diseases are thought to involve free radical reactions in tissue injury. An overview will be given of the evidence for the occurrence of free radicals and the importance of antioxidant interventions, with particular reference to the lipophilic antioxidant vitamin E (tocopherols and tocotrienols).

Free radical recycling and intramembrane mobility in the antioxidant properties of alpha-tocopherol and alpha-tocotrienol

Serbinova E, Kagan V, Han D, Packer L.

Free Radic Biol Med. February 1991;10(5):263-75.

d-Alpha-tocopherol (2R,4’R,8’R-Alpha-tocopherol) and d-alpha-tocotrienol are two vitamin E constituents having the same aromatic chromanol “head” but differing in their hydrocarbon “tail”: tocopherol with a saturated and toctrienol with an unsaturated isoprenoid chain. d-Alpha-tocopherol has the highest vitamin E activity, while d-alpha-tocotrienol manifests only about 30% of this activity. Since vitamin E is considered to be physiologically the most important lipid-soluble chain-breaking antioxidant of membranes, we studied alpha-tocotrienol as compared to alpha-tocopherol under conditions which are important for their antioxidant function. d-Alpha-tocotrienol possesses 40-60 times higher antioxidant activity against (Fe2+ + ascorbate)- and (Fe2+ + NADPH)-induced lipid peroxidation in rat liver microsomal membranes and 6.5 times better protection of cytochrome P-450 against oxidative damage than d-alpha-tocopherol. To clarify the mechanisms responsible for the much higher antioxidant potency of d-alpha-tocotrienol compared to d-alpha-tocopherol, ESR studies were performed of recycling efficiency of the chromanols from their chromanoxyl radicals. 1H-NMR measurements of lipid molecular mobility in liposomes containing chromanols, and fluorescence measurements which reveal the uniformity of distribution (clusterizations) of chromanols in the lipid bilayer. From the results, we concluded that this higher antioxidant potency of d-alpha-tocotrienol is due to the combined effects of three properties exhibited by d-alpha-tocotrienol as compared to d-alpha-tocopherol: (i) its higher recycling efficiency from chromanoxyl radicals, (ii) its more uniform distribution in membrane bilayer, and (iii) its stronger disordering of membrane lipids which makes interaction of chromanols with lipid radicals more efficient. The data presented show that there is a considerable discrepancy between the relative in vitro antioxidant activity of d-alpha-tocopherol and d-alpha-tocotrienol with the conventional bioassays of their vitamin activity.