Tocotrienols, the unsaturated forms of vitamin E, can function as antioxidants and lipid protectors in tobacco leaves

Matringe M, Ksas B, Rey P, Havaux M.

Plant Physiol. 2008 Jun;147(2):764-78. Epub 2008 Apr 25.

Vitamin E is a generic term for a group of lipid-soluble antioxidant compounds, the tocopherols and tocotrienols. While tocotrienols are considered as important vitamin E components in humans, with functions in health and disease, the protective functions of tocotrienols have never been investigated in plants, contrary to tocopherols. We took advantage of the strong accumulation of tocotrienols in leaves of double transgenic tobacco (Nicotiana tabacum) plants that coexpressed the yeast (Saccharomyces cerevisiae) prephenate dehydrogenase gene (PDH) and the Arabidopsis (Arabidopsis thaliana) hydroxyphenylpyruvate dioxygenase gene (HPPD) to study the antioxidant function of those compounds in vivo. In young leaves of wild-type and transgenic tobacco plants, the majority of vitamin E was stored in thylakoid membranes, while plastoglobules contained mainly delta-tocopherol, a very minor component of vitamin E in tobacco. However, the vitamin E composition of plastoglobules was observed to change substantially during leaf aging, with alpha-tocopherol becoming the major form. Tocotrienol accumulation in young transgenic HPPD-PDH leaves occurred without any significant perturbation of photosynthetic electron transport. Tocotrienols noticeably reinforced the tolerance of HPPD-PDH leaves to high light stress at chilling temperature, with photosystem II photoinhibition and lipid peroxidation being maintained at low levels relative to wild-type leaves. Very young leaves of wild-type tobacco plants turned yellow during chilling stress, because of the strongly reduced levels of chlorophylls and carotenoids, and this phenomenon was attenuated in transgenic HPPD-PDH plants. While sugars accumulated similarly in young wild-type and HPPD-PDH leaves exposed to chilling stress in high light, a substantial decrease in tocotrienols was observed in the transgenic leaves only, suggesting vitamin E consumption during oxygen radical scavenging. Our results demonstrate that tocotrienols can function in vivo as efficient antioxidants protecting membrane lipids from peroxidation.

Read Full Article Here

Reduction of DNA damage in older healthy adults by Tri E Tocotrienol supplementation

Chin SF, Hamid NA, Latiff AA, Zakaria Z, Mazlan M, Yusof YA, Karim AA, Ibahim J, Hamid Z, Ngah WZ.

Nutrition. 2008 Jan;24(1):1-10.

Objective: The free radical theory of aging (FRTA) suggests that free radicals are the leading cause of deteriorating physiologic function during senescence. Free radicals attack cellular structures or molecules such as DNA resulting in various modifications to the DNA structures. Accumulation of unrepaired DNA contributes to a variety of disorders associated with the aging process.

 

Methods: A randomized, double-blinded placebo-controlled study was undertaken to evaluate the effect of Tri E Tocotrienol on DNA damage. Sixty four subjects 37-78 y old completed the study. A daily dose of 160 mg of Tri E Tocotrienol was given for 6 months. Blood samples were analyzed for DNA damage using comet assay, frequency of sister chromatid exchange (SCE), and chromosome 4 aberrations.

 

Results: Results showed a significant reduction in DNA damage as measured by comet assay after 3 mo (P < 0.01) and remained low at 6 mo (P < 0.01). The frequency of SCE was also reduced after 6 mo of supplementation (P < 0.05), albeit more markedly in the >50 y-old group (P < 0.01) whereas urinary 8-hydroxy-2′-deoxyguanosine (8-OHdG) levels were significantly reduced (P < 0.05). A strong positive correlation was observed between SCE with age, whereas weak positive correlations were observed in DNA damage and 8-OHdG, which were reduced with supplementation. However, no translocation or a stable insertion was observed in chromosome 4.

 

Conclusion: Tri E Tocotrienol supplementation may be beneficial by reducing DNA damage as indicated by a reduction in DNA damage, SCE frequency, and urinary 8-OHdG.

Chemical reactivities and physical effects in comparison between tocopherols and tocotrienols: Physiological significance and prospects as antioxidants

Yoshida Y, Saito Y, Jones LS, Shigeri Y.

J Biosci Bioeng. 2007 Dec;104(6):439-45.

Vitamin E is a generic term for all tocopherol and tocotrienol derivatives. The most abundant and active form of vitamin E isoforms in vivo is alpha-tocopherol, but recently the roles of other forms of vitamin E have received renewed attention. In this review, we summarize the differences among alpha-, beta-, gamma-, delta-tocopherols and tocotrienols specifically regarding the following points; (i) their radical-scavenging efficacies and chemical reactivity with metal ions in solution, (ii) their physical effects at the liposomal membrane interior, and (iii) their protective effects against cell toxicity. Moreover, the physiological significance and future prospects for using vitamin E, especially tocotrienols, for the prevention and treatment of disease are discussed.

Read Full Article Here

Effects of new combinative antioxidant FeAOX-6 and alpha-tocotrienol on macrophage atherogenesis-related functions

Napolitano M, Avanzi L, Manfredini S, Bravo E.

Vascul Pharmacol. 2007 Jun;46(6):394-405. Epub 2007 Feb 1.

Pivotal role in atherogenesis is played by macrophages, which are early site for lipid accumulation and mediate the inflammatory and immune response in the intima. Epidemiological evidence indicates that natural antioxidants reduce the risk of heart disease, but, so far, supplementation studies have failed to confirm any protective effects of these compounds against cardiovascular disease. This study evaluated the effects of the natural antioxidant alpha-tocotrienol and of the newly designed compound, FeAOX-6, which combines antioxidant structural features of both tocopherols and carotenoids into a single molecule, on macrophage functions involved in foam cell formation. FeAOX-6 or alpha-tocotrienol induce a strong dose-dependent reduction of cholesterol and reduce cholesterol accumulation in human macrophages. The extent of the reduction found with alpha-tocotrienol was greater than that induced by FeAOX-6 and did not correlate with their respective antioxidant capacities. Treatment of HMDM with alpha-tocotrienol or FeAOX-6 enhanced also tumor necrosis factor-alpha secretion. These results are consistent with a reduction in scavenger receptor activity, but we found that antioxidant treatment did not affect cholesterol uptake from modified LDL. The effects on release on pro-inflammatory prostanoid precursors, PGE(2) and cytokine suggest a variety of metabolic responses that are both dependent on antioxidant compounds and macrophages activation status.

 

Dose dependent elevation of plasma tocotrienol levels and its effect on arterial compliance, plasma total antioxidant status, and lipid profile in healthy humans supplemented with tocotrienol rich vitamin E

Rasool AH, Yuen KH, Yusoff K, Wong AR, Rahman AR.

J Nutr Sci Vitaminol (Tokyo). 2006 Dec;52(6):473-8.

Tocotrienols are a class of vitamin E reported to be potent antioxidants, besides having the ability to inhibit the HMG-CoA reductase enzyme. This study assessed the effects of 3 doses of tocotrienol-rich vitamin E (TRE) on plasma tocotrienol isomer concentration, arterial compliance, plasma total antioxidant status (TAS), aortic systolic blood pressure (ASBP), serum total cholesterol (TC) and low density lipoprotein cholesterol (LDL-C) in healthy males.

Methodology: This randomised, blinded end-point, placebo-controlled clinical trial with a parallel design involved 36 healthy male subjects who took either an oral placebo or TRE at doses of 80, 160 or 320 mg daily for 2 mo. Baseline and end-of-treatment measurements of vitamin E concentration, arterial compliance [assessed by aortic femoral pulse wave velocity (PWV) and augmentation index (AI)], ASBP, plasma TAS, serum TC and LDL-C were taken.

Results: Baseline tocotrienol isomer concentrations were low and not detectable in some subjects. Upon supplementation, all TRE-treated groups showed significant difference from placebo for their change in alpha, gamma and delta tocotrienol concentrations from baseline to end of treatment. There was a linear dose and blood level relationship for all the isomers. There was no significant difference between groups for their change in PWV, AI, plasma TAS, ASBP, TC or LDL-C from baseline to end of treatment. Groups 160 mg (p = 0.024) and 320 mg (p = 0.049) showed significant reductions in their ASBP. Group 320 mg showed a significant 9.2% improvement in TAS.

Conclusion: TRE at doses up to 320 mg daily were well tolerated. Treatment significantly increased alpha, delta, and gamma tocotrienol concentrations but did not significantly affect arterial compliance, plasma TAS, serum TC or LDL-C levels in normal subjects.

Read Full Article Here

Comparative antioxidant activity of tocotrienols and the novel chromanyl-polyisoprenyl molecule FeAox-6 in isolated membranes and intact cells

Palozza P, Verdecchia S, Avanzi L, Vertuani S, Serini S, Iannone A, Manfredini S.

Mol Cell Biochem. 2006 Jul;287(1-2):21-32. Epub 2006 Apr 28.

Oxidative stress plays a pivotal role in the pathogenesis of several chronic diseases and antioxidants may represent potential tools for the prevention of these diseases. Here, we investigated the antioxidant efficiency of different tocotrienol isoforms (alpha-, delta-, gamma-tocotrienols), and that of FeAox-6, a novel synthetic compound which combines, by a stable covalent bond, the chroman head of vitamin E and a polyisoprenyl sequence of four conjugated double bonds into a single molecule. The antioxidant efficiency was evaluated as the ability of the compounds to inhibit lipid peroxidation, reactive oxygen species (ROS) production, heat shock protein (hsp) expression in rat liver microsomal membranes as well as in RAT-1 immortalized fibroblasts challenged with different free radical sources, including 2,2′-azobis(2-amidinopropane) (AAPH), tert-butyl hydroperoxide (tert-BOOH) and H2O2. Our results show that individual tocotrienols display different antioxidant potencies. Irrespective of the prooxidant used, the order of effectiveness was:delta-tocotrienol > gamma-tocotrienol = alpha-tocotrienol in both isolated membranes and intact cells. This is presumably due to the decreased methylation of delta-tocotrienol chromane ring, which allows the molecule to be more easily incorporated into cell membranes. Moreover, we found that FeAox-6 showed an antioxidant potency greater than that of delta-tocotrienol. Such an efficiency seems to depend on the concomitant presence of a chromane ring and a phytyl chain in the molecule, which because of four conjugated double bonds, may induce a greater mobility and a more uniform distribution within cell membrane. In view of these results, FeAox-6 represents a new potential preventive agent in chronic diseases in which oxidative stress plays a pathogenic role.

Molecular mechanism of antioxidant synergism of tocotrienols and carotenoids in palm oil

Schroeder MT, Becker EM, Skibsted LH.

J Agric Food Chem. 2006 May 3;54(9):3445-53.

During repeated deep-fat frying of potato slices at 163 degrees C in yellow or red palm olein of comparable fatty acid profiles, the oxidative stability (peroxide value and anisidine value) of the palm oleins was similar, and in yellow palm olein, the rate of antioxidant depletion decreased in the order gamma-T3 > alpha-T3 > delta-T3 (T3, tocotrienol). In red palm olein, which had a total tocopherol/tocotrienol content of 1260 vs 940 ppm in yellow palm olein and a corresponding longer induction period in the Rancimat stability test at 120 degrees C, only depletion of gamma-T3 was significant among the phenols during frying and slower as compared to that in yellow palm olein. The carotenes in the red palm olein were depleted linearly with the number of fryings, apparently yielding an overall protection of the phenols. In antioxidant-depleted palm olein and in phospholipid liposomes with added increasing concentrations of phenols, gamma-T3 was found to be a better antioxidant than alpha-T3. alpha-T3 and alpha-T (T, tocopherol) had a similar antioxidant effect in antioxidant-depleted palm olein in the Rancimat stability test, while in the liposomes the ordering as determined by induction period for the formation of conjugated dienes was gamma-T3 > alpha-T3 > alpha-T. The addition of 100-1000 ppm beta-carotene to antioxidant-depleted palm olein or liposomes (lycopene also tested) did not provide any protection against oxidation. In the liposomes, synergistic interactions were observed between beta-carotene or lycopene and alpha-T, alpha-T3, or gamma-T3 for carotene/phenol ratios of 1:10 and 1:2 but not for 1:1. In chloroform, carotenes were regenerated by tocopherols/tocotrienols from carotene radicals generated by laser flash photolysis as shown by transient absorption spectroscopy, suggesting that carotenes rather than phenols are the primary substrate for lipid-derived radicals in red palm olein, in effect depleting carotenes prior to phenols during frying. Regeneration of carotenes by the phenols also explains the synergism in liposomes. In the laser flash photolysis experiments, gamma-T3 was also found to be faster in regenerating carotenes than alpha-T3 and alpha-T.

A comparison between tocopherol and tocotrienol effects on gastric parameters in rats exposed to stress

Azlina MF, Nafeeza MI, Khalid BA.

Asia Pac J Clin Nutr. 2005;14(4):358-65.

Rats exposed to stress developed various changes in the gastrointestinal tract and hormones. The present study was designed to compare the impact of tocopherol and tocotrienol on changes that influence gastric and hormonal parameters important in maintaining gastric mucosal integrity in rats exposed to restrain stress. These include gastric acidity, gastric tissue content of parameters such as malondialdehyde, prostaglandin (PGE(2)), serum levels of gastrin and glucagon-like peptide-1 (GLP-1). Sixty male Sprague-Dawley rats (200-250 g) were randomly divided into three equal sized groups, a control group which received a normal rat diet (RC) and two treatment groups each receiving a vitamin deficient diet with oral supplementation of either tocopherol (TF) or tocotrienol (TT) at 60 mg/kg body weight. Blood samples were taken from half the number of rats (non-stressed group) after a treatment period of 28 days before they were killed. The remaining half was subjected to experimental restraint-stress, at 2 hours daily for 4 consecutive days (stressed groups), on the fourth day, blood samples were taken and the rats killed. The findings showed that the gastric acid concentration and serum gastrin level in stressed rats were significantly (P<0.05) reduced compared to the non-stressed rats in the control and TF groups. However, the gastric acidity and gastrin levels in the TT group were comparable in stressed and non-stressed rats. These findings suggest that tocotrienol is able to preserve the gastric acidity and serum gastrin level which are usually altered in stressed conditions. The PGE(2) content and the plasma GLP-1 level were, however, comparable in all stressed and non-stressed groups indicating that these parameters were not altered in stress and that supplementation with TF or TT had no effect on the gastric PGE2 content or the GLP-1 level. The malondialdehyde, an indicator of lipid peroxidation was higher from gastric tissues in the stressed groups compared to the non-stressed groups. These findings implicated that free radicals may play a role in the development of gastric injury in stress and supplementation with either TF or TT was able to reduce the lipid peroxidation levels compared to the control rats. We conclude that both tocopherol and tocotrienol are comparable in their gastro-protective ability against damage by free radicals generated in stress conditions, but only tocotrienol has the ability to block the stress-induced changes in the gastric acidity and gastrin level.

Evidence for the preventive effect of the polyunsaturated phytol side chain in tocotrienols on 17beta-estradiol epoxidation

Yu FL, Gapor A, Bender W.

Cancer Detect Prev. August 2005;29(4):383-8.

Background: We found that 17beta-estradiol (E2) could be activated by epoxidation to bind DNA and to inhibit nuclear RNA synthesis. Vitamin E compounds are powerful antioxidants and chain-breaking free radical scavengers. The chromanol ring in Vitamin E is believed to be involved in these reactions.

Methods: Here, we examined the preventive effect of alpha-tocopherol, alpha-, gamma- and delta-tocotrienols on E2 activation.

Results: We found that when any one of these Vitamin E compounds was mixed with E2 for epoxidation by the epoxide-forming oxidant dimethyldioxirane (DMDO), alpha-tocopherol was the least effective as compared with the tocotrienols against the formation of E2 epoxide as reflected by the loss of the ability of E2 to inhibit nuclear RNA synthesis. This conclusion was further confirmed by the binding studies of [3H] labeled E2 to DNA using either DMDO or liver microsomes activation system.

Conclusions: Since the chromanol ring is shared by both tocopherols and tocotrienols and the only difference between these two subgroups of Vitamin E is the phytol side chain, we conclude that the polyunsaturated phytol group in tocotrienols plays a key preventive role in E2 epoxidation. This is the first report showing that the polyunsaturated phytol side chain in tocotrienols is involved in an antioxidative activity and it may also have a preventive effect against the E2 epoxide induced breast cancer carcinogenesis at the initiation.

Cardioprotection with palm tocotrienol: Antioxidant activity of tocotrienol is linked with its ability to stabilize proteasomes

Das S, Powell SR, Wang P, Divald A, Nesaretnam K, Tosaki A, Cordis GA, Maulik N, Das DK.

Am J Physiol Heart Circ Physiol. 2005 Jul;289(1):H361-7.

Tocotrienols, isomers of vitamin E, have been found to possess many health benefits. The present study was designed to determine whether tocotrienol has a direct cardioprotective role. Isolated rat hearts were perfused for 15 min with Krebs-Ringer bicarbonate buffer in the absence or presence of palm tocotrienol derived from the tocotrienol-rich fraction (0.035%) of palm oil (TRF). In another group of studies, the hearts were preperfused for 15 min in the presence of a c-Src inhibitor, 4-amino-5-(4-methylphenyl)-7-(t-butyl)-pyrazolo-3,4-d-pyrimidine (PPI). The hearts were then subjected to 30 min of global ischemia followed by 2 h of reperfusion. As expected, ischemia-reperfusion caused ventricular dysfunction, electrical rhythm disturbances, and increased myocardial infarct size. PPI or TRF could reverse the ischemia-reperfusion-mediated cardiac dysfunction. Ischemia-reperfusion also upregulated c-Src expression and phosphorylation. Although TRF only minimally affected c-Src expression, it significantly inhibited the phosphorylation of c-Src. Ischemia-reperfusion reduced 20S and 26S proteasome activities, an effect prevented by TRF pretreatment. PPI exerted a cardioprotective effect that is not mediated by the proteasome but, rather, through direct inhibition of c-Src. The results of this study support a role for c-Src in postischemic cardiac injury and dysfunction and demonstrate direct cardioprotective effects of TRF. The cardioprotective properties of TRF appear to be due to inhibition of c-Src activation and proteasome stabilization.

Read Full Article Here