Antioxidant activity and inhibition of lipid peroxidation in germinating seeds of transgenic soybean expressing OsHGGT

Kim YH, Lee YY, Kim YH, Choi MS, Jeong KH, Lee SK, Seo MJ, Yun HT, Lee CK, Kim WH, Lee SC, Park SK, Park HM.

Tocochromanols are potent lipid-soluble antioxidants and essential nutrients for human health. Genetic engineering techniques were used to develop soybeans with enhanced vitamin E levels, including tocotrienols, which are not found in soybean. The gene encoding rice homogentisate geranylgeranyl transferase (HGGT) was overexpressed in soybeans using seed-specific and constitutive promoters. The association between abundance of vitamin E isomers and antioxidant activity was investigated during seed germination. With the exception of β-tocotrienol, all vitamin E isomers were detected in germinating seeds expressing OsHGGT. The antioxidant properties of germinating seed extracts were determined using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2′-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radicals and lipid peroxidation (TBARS). Compared with intact wild-type seeds, transgenic seeds showed increases in radical scavenging of 5.4-17 and 23.2-35.3% in the DPPH and ABTS assays, respectively. Furthermore, the lipid peroxidation levels were 2.0-4.5-fold lower in germinating seeds from transgenic lines than in wild-type seeds. Therefore, it appears that the antioxidant potential of transgenic oil-producing plants such as soybean, sunflower, and corn may be enhanced by overexpressing OsHGGT during seed germination.