Assessing the neuroprotective effect of antioxidative food factors by application of lipid-derived dopamine modification adducts

Liu X, Yamada N, Osawa T.

Advances in understanding the neurodegenerative pathologies are creating new opportunities for the development of neuroprotective therapies, such as antioxidant food factors, lifestyle modification, and drugs. However, the biomarker by which to determine the effect of the agent on neurodegeneration is limited. We here address hexanoyl dopamine (HED), one of novel dopamine adducts derived from brain polyunsaturated acid, referring to its in vitro formation, potent toxicity to SH-SY5Y cells, and application to assess the neuroprotective effect of antioxidative food factors. Dopamine is a neurotransmitter and its deficiency is a characterized feature in Parkinson’s disease (PD), thereby HED represents a new addition to understanding of dopamine biology and pathophysiology of PD and a novel biomarker for the assessment of neuroprotective therapies. We have established an analytical system using for the detection of HED and its toxicity to the neuroblstoma cell line, SH-SY5Y cells. Here, we discuss the characteristics of the system and its applications to investigate the neuroprotective effect of several antioxidants that originate from food.