Vitamin E is a family of chromanols that vary by the degree of methylation of the chroman ring as well as the nature of the hydrophobic side chain at C2 that serves to anchor these lipids in biological membranes. The tocopherols contain saturated side chains, whereas the tocotrienols contain three sites of unsaturation and are derived from geranylgeranyl diphosphate. A growing interest in the unique biological activities of the tocotrienols has led us to begin syntheses of isotopically substituted forms and other derivatives that will be useful for probing the metabolism and membrane behavior of the tocotrienols. In order to be certain of our ability to selectively modify sites on the parent molecules it was necessary to make as complete an assignment of the 1H and 13C NMR as possible. Herein we report multidimensional NMR data (HSQC, COSY, ADEQUATE(1,1), C–H HMBC, and NOESY) that have allowed us to assign the identity of almost all the resonances for alpha-, beta-, gamma-, and delta-tocotrienol.