Vitamin E status and its determinants in patients with cystic fibrosis

Sapiejka E, Krzyżanowska-Jankowska P, Wenska-Chyży E, Szczepanik M, Walkowiak D, Cofta S, Pogorzelski A, Skorupa W, Walkowiak J

Adv Med Sci. 2018 Aug 3;63(2):341-346. doi: 10.1016/j.advms.2018.04.001. [Epub ahead of print]

Abstract

PURPOSE:

The risk of vitamin E deficiency is of primary concern in cystic fibrosis patients. However, early diagnosis and routine vitamin Esupplementation can lead to its normal or even high levels. In the present study, we assessed vitamin E status in a large group of cystic fibrosis patients. Moreover, we also aimed to establish determinants of its body resources in cystic fibrosis patients.

MATERIAL AND METHODS:

The study group comprised 211 cystic fibrosis patients aged from 1 month to 48 years. In all of them serum α-tocopherol concentration was analyzed using high-performance liquid chromatography.

RESULTS:

Median vitamin E concentration was 9.9 μg/ml (1st-3rd quartile: 7.5-13.5). Vitamin E deficiency was found in 17 (8.0%) and high levels were documented in 24 (11.4%) participants. Patients with and without vitamin E deficiency did not differ significantly with respect to age, standardized body weight and height, FEV1, albumin concentration and vitamin E supplementation dose. However, vitamin E deficiency appeared more frequently in participants without vitamin E supplementation. Moreover, in multiple linear regression analysis pancreatic insufficiency, severe CFTR gene mutation and vitamin E dose, were potentially defined as determinants of vitamin E concentration.

CONCLUSIONS:

Vitamin E deficiency in cystic fibrosis patients is rather rare nowadays. Excessive vitamin E levels seem to be more frequent. Vitamin E status wasn’t documented to be strictly related to clinical determinants. Beyond vitamin E supplementation, exocrine pancreatic function and CFTR gene mutations may have had an impact on the vitamin E body resources in cystic fibrosis patients.

Read More

A 12-week evaluation of annatto tocotrienol supplementation for postmenopausal women: safety, quality of life, body composition, physical activity, and nutrient intake

Shen CL, Wang S, Yang S, Tomison MD, Abbasi M, Hao L, Scott S, Khan MS, Romero AW, Felton CK, Mo H

BMC Complement Altern Med. 2018 Jun 28;18(1):198. doi: 10.1186/s12906-018-2263-0.

Abstract

BACKGROUND:

Evidence suggests that tocotrienols may benefit bone health in osteopenic women. However, their safety in this population has never been investigated. This study was to evaluate the safety of a 12-week supplementation of annato tocotrienol in postmenopausal osteopenic women, along with effects of the supplementation on quality of life, body composition, physical activity, and nutrient intake in this population.

METHODS:

Eighty nine postmenopausal osteopenic women were randomly assigned to 3 treatment arms: (1) Placebo (430 mg olive oil/day), (2) Low tocotrientol (Low TT) (430 mg tocotrienol/day from DeltaGold 70 containing 300 mg tocotrienol) and (3) High tocotrienol (High TT) (860 mg tocotrienol/day from DeltaGold 70 containing 600 mg tocotrienol) for 12 weeks. DeltaGold 70 is an extract from annatto seed with 70% tocotrienol consisting of 90% delta-tocotrienol and 10% gamma-tocotrienol. Safety was examined by assessing liver enzymes (aspartate aminotransferase, alanine aminotransferase), alkaline phosphatase, bilirubin, kidney function (blood urea nitrogen and creatinine), electrolytes, glucose, protein, albumin, and globulin at 0, 6, and 12 weeks. Serum tocotrienol and tocopherol concentrations were assessed and pills counted at 0, 6, and 12 weeks. Quality of life, body composition, physical activity, and dietary macro- and micro-nutrient intake were evaluated at 0 and 12 weeks. A mixed model of repeated measures ANOVA was applied for analysis.

RESULTS:

Eighty seven subjects completed the study. Tocotrienol supplementation did not affect liver or kidney function parameters throughout the study. No adverse event due to treatments was reported by the participants. Tocotrienol supplementation for 6 weeks significantly increased serum delta-tocotrienol level and this high concentration was sustained to the end of study. There was no difference in serum delta-tocotrienol levels between the Low TT and the High TT groups. No effects of tocotrienol supplementation were observed on quality of life, body composition, physical activity, and nutrient intake.

CONCLUSIONS:

Annatto-derived tocotrienol up to 600 mg per day for 12 weeks appeared to be safe in postmenopausal osteopenic women, particularly in terms of liver and kidney functions. Tocotrienol supplementation for 12 weeks did not affect body composition, physical activity, quality of life, or intake of macro- and micro-nutrients in these subjects.

Read More

Severe Alcoholic Hepatitis Effectively Treated with Vitamin E as an Add-on to Corticosteroids.

Miyashima Y, Shibata M, Honma Y, Matsuoka H, Hiura M, Abe S, Harada M

Intern Med. 2017 Oct 11. doi: 10.2169/internalmedicine.8767-16.

Abstract

A 49-year-old woman with a history of heavy alcohol drinking was admitted to our hospital due to jaundice and abdominal distention. A blood test showed leukophilia, mild hypoalbuminemia, hyperbilirubinemia, hepatobiliary injury and coagulopathy. Image studies showed an extremely enlarged fatty liver and splenomegaly. The Japan alcoholic hepatitis score and Maddrey’s discriminant function were 10 and 54 points, respectively. We diagnosed her with severe alcoholic hepatitis and treated her with corticosteroids, but her liver function did not improve. We therefore administered the vitamin E product tochopheryl acetate (150 mg/day) as an add-on therapy, after which her leukophilia, liver enzymes and coagulopathy improved immediately.

Read More

Effects of delta-tocotrienol on obesity-related adipocyte hypertrophy, inflammation and hepatic steatosis in high-fat-fed mice.

Allen L, Ramalingam L, Menikdiwela K, Scoggin S, Shen CL, Tomison MD, Kaur G, Dufour JM, Chung E, Kalupahana NS, Moustaid-Moussa N

J Nutr Biochem. 2017 Oct;48:128-137. doi: 10.1016/j.jnutbio.2017.07.003. Epub 2017 Jul 10.

Abstract

Inflammation is a major underlying cause for obesity-associated metabolic diseases. Hence, anti-inflammatory dietary components may improve obesity-related disorders. We hypothesized that delta-tocotrienol (δT3), a member of the vitamin E family, reduces adiposity, insulin resistance and hepatic triglycerides through its anti-inflammatory properties. To test this hypothesis, C57BL/6J male mice were fed a high-fat diet (HF) with or without supplementation of δT3 (HF+δT3) at 400 mg/kg and 1600 mg/kg for 14 weeks, and they were compared to mice fed a low-fat diet (LF) or HF supplemented with metformin as an antidiabetic control. Glucose tolerance tests were administered 2 weeks prior to the end of treatments. Histology, quantitative polymerase chain reaction and protein analyses were performed to assess inflammation and fatty acid metabolism in adipose and liver tissues. Significant improvements in glucose tolerance, and reduced hepatic steatosis and serum triglycerides were observed in δT3-supplemented groups compared to the HF group. Body and fat pad weights were not significantly reduced in HF+δT3 groups; however, we observed smaller fat cell size and reduced macrophage infiltration in their adipose tissues compared to other groups. These changes were at least in part mechanistically explained by a reduction of mRNA and protein expression of proinflammatory adipokines and increased expression of anti-inflammatory adipokines in HF+δT3 mice. Moreover, δT3 dose-dependently increased markers of fatty acid oxidation and reduced markers of fatty acid synthesis in adipose tissue and liver. In conclusion, our studies suggest that δT3 may promote metabolically healthy obesity by reducing fat cell hypertrophy and decreasing inflammation in both liver and adipose tissue.

Read More

Emerging targets to relieve fat stress-induced liver diseases: UDCA, tocotrienol, -3 PUFAs, and IgY targeted NPC1L1 cholesterol transporter.

Cha JY, Park JM, Lee HJ, Bae JS, Han YM, Oh BC, Ko KH, Hahm KB.

Curr Pharm Des. 2017 Jul 14. doi: 10.2174/1381612823666170714124824. [Epub ahead of print]

Abstract

Fat stress-induced liver disease is a hepatic manifestation of metabolic syndrome initiated by excess fat accumulation and encompasses a wide spectrum of diseases from non-alcoholic fatty liver disease to non-alcoholic steatohepatitis, a precursor lesion progressing to more aggressive liver cirrhosis and hepatocellular carcinoma. Although the incidence of these fat stress-induced liver diseases is rapidly increasing worldwide in parallel with the growing epidemics of obesity and metabolic diseases, its exact pathogenesis is not well defined. Although obesity, sedentary life-style, altered dietary pattern, insulin resistance, altered intestinal barrier function, inflammatory cytokines, and oxidative stress have been acknowledged as contributing factors because of the indefinite pathogenesis of metabolic diseases, the only reliable treatment is lifestyle intervention composed of restrictive diet and exercise. Additionally, some existing medications such as pioglitazone and antioxidants such as vitamin E were reported to be effective; in this review, several novel agents especifically targeting non-alcoholic fatty liver disease pathogenesis under clinical trial will be introduced. These include an NPC1L1 blocker (ezetimibe), which significantly improved histological and symptomatic scores associated with steatohepatitis and fibrosis; clofibrate, phentoxyfylline, ursodeoxycholic acid, and tocopherol, all of which are prescribed to relieve fat stress; and additional IgY targeted NPC1L1, tocotrienol, ursodeoxycholic acid, and -3 polyunsaturated fatty acids, which are actively under investigation to confirm the safety of long-term use.

Read More

ACTION OF VITAMIN E ON EXPERIMENTAL SEVERE ACUTE LIVER FAILURE.

Miguel FM, Schemitt EG, Colares JR, Hartmann RM, Morgan-Martins MI, Marroni NP.

Arq Gastroenterol. 2017 Feb 13:0. doi: 10.1590/S0004-2803.201700000-03. [Epub ahead of print]

Abstract

BACKGROUND:

Severe Acute Liver Failure (ALF) is a life-threatening clinical syndrome characterized by hepatocyte necrosis, loss of hepatic architecture, and impairment of liver functions. One of the main causes of ALF is hepatotoxicity from chemical agents, which damage hepatocytes and result in increase of reactive oxygen species. The vitamin E isoform is the one with the strongest biological antioxidant activity.

OBJECTIVE:

To evaluate the antioxidant effect of vitamin E in this ALF model.

METHODS:

We used 56 rats (mean weight of 300 g) divided into eight groups, four groups assessed at 24 hours and 4 assessed at 48 hours after induction: control group (CO); Vitamin E (Vit. E); Thioacetamide (TAA) and Thioacetamide + Vitamina E (TAA+Vit.E). Rats were submitted to injections of thioacetamide (400 mg/kg i.p.) at baseline and 8 hours later. Vitamin E (100 mg/kg ip) was administered 30 minutes after the second dose of thioacetamide. The 48-hour group rats received two additional doses of vitamin E (24h and 36h). At 24h or 48 hours after the administration of the first dose of TAA, rats were weighed and anesthetized and their blood sampled for evaluation of liver integrity through enzymes aspartate aminotransferase (AST) and alanine aminotransferase (ALT). Liver tissue was sampled for assessment of lipid peroxidation (LPO) by the technique TBARS, antioxidant enzymes SOD, CAT, GPx and GST activity, levels of the NO 2 /NO 3 and histology by H&E in two times. The results were expressed as mean ± standard deviation and statistically analyzed by ANOVA followed by Student-Newman-Keuls, with P <0.05 considered as significant.

CONCLUSION:

These results suggest that vitamin E was able to protect the liver from lesions caused by thioacetamide.

Read More

CYP4F2 repression and a modified alpha-tocopherol (vitamin E) metabolism are two independent consequences of ethanol toxicity in human hepatocytes.

Zingg JM, Azzi A, Meydani M.

Toxicol In Vitro. 2017 Jan 3;40:124-133. doi: 10.1016/j.tiv.2016.12.014. [Epub ahead of print]

Abstract

The expression of CYP4F2, a form of cytochrome P-450 with proposed role in α-tocopherol and long-chain fatty acid metabolism, was explored in HepG2 and HepaRG human hepatocytes during ethanol toxicity. Cytotoxicity, ROS production, and JNK and ERK1/2 kinase signaling increased in a dose and time-dependent manner during ethanol treatments; CYP4F2 gene expression decreased, while other CYP4F forms, namely 4F11 and 12, increased along with 3A4 and 2E1 isoforms. α-Tocopherol antagonized the cytotoxicity and CYP4F2 gene repression effect of ethanol in HepG2 cells. Ethanol stimulated the tocopherol-ω-hydroxylase activity and the other steps of vitamin E metabolism, which points to a minor role of CYP4F2 in this metabolism of human hepatocytes. PPAR-γ and SREBP-1c followed the same expression pattern of CYP4F2 in response to ethanol and α-tocopherol treatments. Moreover, the pharmacological inhibition of PPAR-γ synergized with ethanol in decreasing CYP4F2 protein expression, which suggests a role of this nuclear receptor in CYP4F2 transcriptional regulation. In conclusion, ethanol toxicity modifies the CYP expression pattern of human hepatic cells impairing CYP4F2 transcription and protein expression. These changes were associated with a lowered expression of the fatty acid biosynthesis regulators PPAR-γ and SREBP-1c, and with an increased enzymatic catabolism of vitamin E. CYP4F2 gene repression and a sustained vitamin E metabolism appear to be independent effects of ethanol toxicity in human hepatocytes.

Read More

Protection against arsenic-induced hematological and hepatic anomalies by supplementation of vitamin C and vitamin E in adult male rats.

Mondal R, Biswas S, Chatterjee A, Mishra R, Mukhopadhyay A, Bhadra RK, Mukhopadhyay PK.

J Basic Clin Physiol Pharmacol. 2016 Nov 1;27(6):643-652. doi: 10.1515/jbcpp-2016-0020.

Abstract

Chronic arsenic exposure via contaminated drinking water is a global environmental health problem associated with hematological, hepatic and many serious systemic disorders. This study on adult male rats evaluated the protective effects of vitamin E (VE) and vitamin C (VC) against arsenic-mediated hematological and hepatic toxicities. As a result, the present investigation offers strong evidence regarding the protective efficacy of co-administration of VC and VE against hematotoxicity and hepatotoxicity in adult male rats caused by chronic arsenic exposure.

Read More

δ and γ tocotrienols suppress human hepatocellular carcinoma cell proliferation via regulation of Ras-Raf-MEK-ERK pathway-associated upstream signaling.

Burdeos GC, Ito J, Eitsuka T, Nakagawa K, Kimura F, Miyazawa T.

Food Funct. 2016 Oct 12;7(10):4170-4174.

Abstract

Tocotrienol (T3) has recently gained increasing interest due to its anti-cancer effect. Here, we investigated the modulating effect of δ and γ T3 on the Ras-Raf-MEK-ERK oncogenic upstream signaling pathway in human hepatocellular carcinoma HepG2 cells. The results indicated that T3 regulated the upstream signaling cascades of this pathway.

Read More

Vitamin E therapy beyond cancer: tocopherol versus tocotrienol.

Peh HY, Daniel Tan WS, Liao W, Fred Wong WS.

Pharmacol Ther. 2015 Dec 16. pii: S0163-7258(15)00229-6

Abstract

The discovery of vitamin E (α-tocopherol) began in 1922 as a vital component required in reproduction. Today, there are eight naturally occurring vitamin E isoforms, namely α-, β-, γ- and δ-tocopherol and α-, β-, γ- and δ-tocotrienol. Vitamin E are potent antioxidants, capable of neutralizing free radicals directly by donating hydrogen from its chromanol ring. α-Tocopherol is regarded the dominant form in vitamin E as the α-tocopherol transfer protein in the liver binds mainly α-tocopherol, thus preventing its degradation. That contributed to the oversight of tocotrienols and resulted in less than 3% of all vitamin E publications studying tocotrienols. Nevertheless, tocotrienols have been shown to possess superior antioxidant and anti-inflammatory properties over α-tocopherol. In particular, inhibition of 3-hydroxy-3-methylglutaryl-coenzyme A reductase to lower cholesterol, attenuating inflammation via downregulation of transcription factor NF-κB activation, and potent radioprotectant against radiation damage are some properties unique to tocotrienols, not tocopherols. Aside from cancer, vitamin E has also been shown protective in bone, cardiovascular, eye, nephrological and neurological diseases. In light of the different pharmacological properties of tocopherols and tocotrienols, it becomes critical to specify which vitamin E isoform(s) are being studied in any future vitamin E publications. This review provides an update on vitamin E therapeutic potentials, protective effects and modes of action beyond cancer, with comparison of tocopherols against tocotrienols. With the concerted efforts in synthesizing novel vitamin E analogues and clinical pharmacology of vitamin E, it is likely that certain vitamin E isoform(s) will be therapeutic agents against human diseases besides cancer.

Read More