It has been reported that alpha-tocopherol (alpha-Toc), a vitamin E analog, is effective for treatment of non-alcoholic steatohepatitis (NASH). However, it is unknown whether or not other vitamin E analogs are effective. Therefore we designed a new rat model of steatohepatitis induced by tumor necrosis factor-alpha (TNF-alpha) stimulation, and used it to investigate the effects of vitamin E analogs. The rat liver triglyceride content increased with the dosage of TNF-alpha/d-galactosamine (GalN), but was suppressed by intake of both tocotrienol (T3) and alpha-tocopherol. Moreover, lipid peroxides (thiobarbituric acid-reactive substances) level in the liver level was also lower in both groups after tocotrienol and alpha-Toc intake. Intake of both tocotrienol and alpha-tocopherol also tended to control the increase of liver damage marker activity. In the tocotrienol and alpha-tocopherol groups, increases of inflammatory cytokines mRNA expression in the liver were inhibited, and these effects were considered to contribute to improvement of inflammation and fibrosis. The expression of mRNAs for inflammatory cytokines in rat primary hepatocytes was increased by TNF-alpha stimulation, but was inhibited by addition of alpha-tocotrienol and gamma-tocotrienol. Transforming growth factor-beta1 mRNA expression in particular was significantly inhibited by gamma-tocotrienol. These findings suggest that tocotrienol species are effective for amelioration of steatohepatitis, and that tocotrienol and alpha-tocopherol exert a synergistic effect.
Liver Health
Gamma-tocotrienol reduces the triacylglycerol level in rat primary hepatocytes through regulation of fatty acid metabolism
Muto C, Yachi R, Aoki Y, et al
J Clin Biochem Nutr. 2013 Jan;52(1):32-7
The present study was carried out to investigate the effect of vitamin E analogs, especially gamma-tocotrienol (gamma-T3), on hepatic TG accumulation and enzymes related to fatty acid metabolism in three types of rat primary hepatocytes: (1) normal hepatocytes, (2) hepatocytes incubated in the presence of palmitic acid (PA), and (3) hepatocytes with fat accumulation. Our results showed that gamma-T3 significantly reduced the TG content of normal hepatocytes. gamma-T3 also increased the expression of carnitine palmitoyltransferase 1 (CPT1A) mRNA, and tended to reduce that of sterol regulatory element binding protein 1c (SREBP-1c) mRNA. In addition, gamma-T3 markedly suppressed the gene expression of both C/EBP homologous protein (CHOP) and SREBP-1c induced by PA. As these two genes are located downstream of endoplasmic reticulum (ER) stress, their suppression by gamma-T3 might result from a decrease of ER stress. Moreover, gamma-T3 suppressed the expression of interleukin 1beta (IL-1beta), which lies downstream of CHOP signaling. Taken together, our data suggest that gamma-T3 might prevent hepatic steatosis and ameliorate ER stress and subsequent inflammation in the liver.
Tocotrienols Reverse Cardiovascular, Metabolic and Liver Changes in High Carbohydrate, High Fat Diet-Fed Rats
Weng-Yew Wong, Hemant Poudyal, Leigh C. Ward and Lindsay Brown
Nutrients 2012, 4, 1527-1541; doi:10.3390/nu4101527
Abstract
Tocotrienols have been reported to improve lipid profiles, reduce atherosclerotic lesions, decrease blood glucose and glycated haemoglobin concentrations, normalise blood pressure in vivo and inhibit adipogenesis in vitro, yet their role in the metabolic syndrome has not been investigated. In this study, we investigated the effects of palm tocotrienol-rich fraction (TRF) on high carbohydrate, high fat diet-induced metabolic, cardiovascular and liver dysfunction in rats. Rats fed a high carbohydrate, high fat diet for 16 weeks developed abdominal obesity, hypertension, impaired glucose and insulin tolerance with increased ventricular stiffness, lower systolic function and reduced liver function. TRF treatment improved ventricular function, attenuated cardiac stiffness and hypertension, and improved glucose and insulin tolerance, with reduced left ventricular collagen deposition and inflammatory cell infiltration. TRF improved liver structure and function with reduced plasma liver enzymes, inflammatory cell infiltration, fat vacuoles and balloon hepatocytes. TRF reduced plasma free fatty acid and triglyceride concentrations but only omental fat deposition was decreased in the abdomen. These results suggest that tocotrienols protect the heart and liver, and improve plasma glucose and lipid profiles with minimal changes in abdominal obesity in this model of human metabolic syndrome.
Tocotrienol attenuates triglyceride accumulation in HepG2 cells and F344 rats
Burdeos GC, Nakagawa K, Kimura F, Miyazawa T.
Lipids. 2012 May;47(5):471-81. Epub 2012 Feb 26.
Tocotrienol (T3) is an important phytonutrient found in rice bran and palm oil. T3 has gained much interest for lipid lowering effects, especially for cholesterol (Cho) by inhibiting 3-hydroxy-3-methylglutaryl-coenzyme A reductase. Also, usefulness of T3 in improving triglyceride (TG) profiles has been suggested, but its efficacy and mechanism have been unclear. We investigated how T3 decreases TG concentration in cultured cells and animals. In a cell culture study, human hepatoma cells (HepG2) were incubated in a control or a fat (1 mM oleic acid)-loaded medium containing γ-T3 for 24 h. We found that 10-15 μM γ-T3 inhibited cellular TG accumulation significantly, especially in the fat-loaded medium. This manifestation was supported by mRNA and protein expressions of fatty acid synthase, carnitine palmitoyltransferase 1, and cytochrome P450 3A4. In concordance with these results, rice bran T3 supplementation to F344 rats (5 or 10 mg T3/day/rat) receiving a high fat diet for 3 weeks significantly reduced TG and the oxidative stress marker (phospholipid hydroperoxides, PLOOH) in the liver and blood plasma. T3 supplementation did not show changes in the Cho level. These results provided new information and the mechanism of the TG-lowering effect of T3. The lipid lowering effects of dietary T3 might be mediated by the reduction of TG synthesis.
Oral tocotrienols are transported to human tissues and delay the progression of the model for end-stage liver disease score in patients
Patel V, Rink C, Gordillo GM, Khanna S, Gnyawali U, Roy S, Shneker B, Ganesh K, Phillips G, More JL, Sarkar A, Kirkpatrick R, Elkhammas EA, Klatte E, Miller M, Firstenberg MS, Chiocca EA, Nesaretnam K, Sen CK.
J Nutr. 2012 Mar;142(3):513-9. Epub 2012 Feb 1.
Abstract
The natural vitamin E family is composed of 8 members equally divided into 2 classes: tocopherols (TCP) and tocotrienols (TE). A growing body of evidence suggests TE possess potent biological activity not shared by TCP. The primary objective of this work was to determine the concentrations of TE (200 mg mixed TE, b.i.d.) and TCP [200 mg α-TCP, b.i.d.)] in vital tissues and organs of adults receiving oral supplementation. Eighty participants were studied. Skin and blood vitamin E concentrations were determined from healthy participants following 12 wk of oral supplementation of TE or TCP. Vital organ vitamin E levels were determined by HPLC in adipose, brain, cardiac muscle, and liver of surgical patients following oral TE or TCP supplementation (mean duration, 20 wk; range, 1-96 wk). Oral supplementation of TE significantly increased the TE tissue concentrations in blood, skin, adipose, brain, cardiac muscle, and liver over time. α-TE was delivered to human brain at a concentration reported to be neuroprotective in experimental models of stroke. In prospective liver transplantation patients, oral TE lowered the model for end-stage liver disease (MELD) score in 50% of patients supplemented, whereas only 20% of TCP-supplemented patients demonstrated a reduction in MELD score. This work provides, to our knowledge, the first evidence demonstrating that orally supplemented TE are transported to vital organs of adult humans. The findings of this study, in the context of the current literature, lay the foundation for Phase II clinical trials testing the efficacy of TE against stroke and end-stage liver disease in humans.
Trial registration: ClinicalTrials.gov NCT00678834.
Gamma delta tocotrienols reduce hepatic triglyceride synthesis and VLDL secretion
Zaiden N, Yap WN, Ong S, Xu CH, Teo VH, Chang CP, Zhang XW, Nesaretnam K, Shiba S, Yap YL.
J Atheroscler Thromb. 2010 Oct 27;17(10):1019-32.
Abstract
Aim: Present study aimed to elucidate the suppression of serum lipids by gamma- and delta-tocotrienol (γδT3).
Methods: The lipid-lowering effects of γδT3 were investigated using HepG2 liver cell line, hypercholesterolemic mice and borderline-high cholesterol patients.
Results: In-vitro results demonstrated two modes of action. First, γδT3 suppressed the upstream regulators of lipid homeostasis genes (DGAT2, APOB100, SREBP1/2 and HMGCR) leading to the suppression of triglycerides, cholesterol and VLDL biosyntheses. Second, γδT3 enhanced LDL efflux through induction of LDL receptor (LDLr) expression. Treatment of LDLr-deficient mice with 1 mg/day (50 mg/kg/day) γδT3 for one-month showed 28%, 19% reduction in cholesterol and triglyceride levels respectively, whereas HDL level was unaltered. The lipid-lowering effects were not affected by alpha-tocopherol (αTP). In a placebo-controlled human trial using 120 mg/day γδT3, only serum triglycerides were lowered by 28% followed by concomitant reduction in the triglyceride-rich VLDL and chylomicrons. In contrast, total cholesterol, LDL and HDL remained unchanged in treated and placebo groups. The discrepancies between in-vitro, in-vivo and human studies may be attributed to the differential rates of post-absorptive γδT3 degradation and LDL metabolism.
Conclusion: Reduction in triglycerides synthesis and transport may be the primary benefit caused by ingesting γδT3 in human.
Protective effects of vitamin E analogs against carbon tetrachloride-induced fatty liver in rats
Yachi R, Igarashi O, Kiyose C.
J Clin Biochem Nutr. 2010 Sep;47(2):148-54. Epub 2010 Aug 6.
Recently, it has been reported that α-tocopherol (α-Toc) is effective for amelioration of liver damage. However, it is unknown whether other vitamin E analogs are effective. In this study, we investigated the effects of γ-tocopherol (γ-Toc) and tocotrienols (T3) in rats with fatty liver. Rats fed a vitamin E-deficient diet for four weeks were divided into eight groups: Control, carbon tetrachloride (CCl(4)), α-Toc, α-Toc + CCl(4), γ-Toc, γ-Toc + CCl(4), T3 mix, T3 mix + CCl(4). After a 24 h fast, the rats were administered 20 mg of each of the vitamin E analogs, respectively. Moreover, the CCl(4) group were given 0.5 ml/kg body weight corn oil preparation containing CCl(4) 6 h after vitamin E administration. We measured the activities of aspartate aminotransferase and alanine aminotransferase (ALT) in plasma, and the contents of triglyceride (TG), total cholesterol (T-Chol) and vitamin E analogs in the liver. Also, we determined the hepatic expression of mRNA for inflammatory cytokines. The liver TG content in the γ-Toc + CCl(4) and T3 mix + CCl(4) groups was decreased in comparison with the CCl(4) group. Moreover, ALT activity in the T3 mix + CCl(4) group was significantly lower than CCl(4) group. These findings suggest that γ-Toc and T3 are effective for amelioration of fatty liver.
Vitamin E for Nonalcoholic Steatohepatitis: Ready for Prime Time?
Sanyal AJ, Chalasani N, Kowdley KV, McCullough A,Diehl AM, Bass NM, et al.
Hepatology. 2010 Aug;52(2):789-92.
Recent results show that alpha-tocopheryl succinate (alpha-TOS) is a proapoptotic agent with antineoplastic activity. As modifications of the vitamin E (VE) molecule may affect its apoptogenic activity, we tested a number of newly synthesised VE analogues using malignant cell lines. Analogues of alpha-TOS with lower number of methyl substitutions on the aromatic ring were less active than alpha-TOS. Replacement of the succinyl group with a maleyl group greatly enhanced the activity, while it was lower for the glutaryl esters. Methylation of the free succinyl carboxyl group on alpha-TOS and delta-TOS completely prevented the apoptogenic activity of the parent compounds. Both Trolox and its succinylated derivative were inactive. alpha-tocotrienol (alpha-T3 H) failed to induce apoptosis, while gamma-T3 H was apoptogenic, and more so when succinylated. Shortening the aliphatic side chain of gamma-T3 by one isoprenyl unit increased its activity. Neither phytyl nor oleyl succinate caused apoptosis. These findings show that modifications of different functional moieties of the VE molecule can enhance apoptogenic activity. It is hoped that these observations will lead to the synthesis of analogues with even higher apoptogenic and, consequently, antineoplastic efficacy.
Triton WR1339, an inhibitor of lipoprotein lipase, decreases vitamin E concentration in some tissues of rats by inhibiting its transport to liver
Abe C, Ikeda S, Uchida T, Yamashita K, Ichikawa T.
J Nutr. 2007 Feb;137(2):345-50.
The aim of this experiment was to clarify the contribution of the alpha-tocopherol transfer activity of lipoprotein lipase (LPL) to vitamin E transport to tissues in vivo. We studied the effect of Triton WR1339, which prevents the catabolism of triacylglycerol-rich lipoproteins by LPL on vitamin E distribution in rats. Vitamin E-deficient rats fed a vitamin E-free diet for 4 wk were injected with Triton WR1339 and administered by oral gavage an emulsion containing 10 mg of alpha-tocopherol, 10 mg of gamma-tocopherol, or 29.5 mg of a tocotrienol mixture with 200 mg of sodium taurocholate, 200 mg of triolein, and 50 mg of albumin. alpha-Tocopherol was detected in the serum and other tissues of the vitamin E-deficient rats, but gamma-tocopherol, alpha- and gamma-tocotrienol were not detected. Triton WR1339 injection elevated (P<0.05) the serum alpha-tocopherol concentration and inhibited (P<0.05) the elevation of alpha-tocopherol concentration in the liver, adrenal gland, and spleen due to the oral administration of alpha-tocopherol. Neither alpha-tocopherol administration nor Triton WR1339 injection affected (P>or=0.05) the alpha-tocopherol concentration in the perirenal adipose tissue, epididymal fat, and soleus muscle despite a high expression of LPL in the adipose tissue and muscle. These data show that alpha-tocopherol transfer activity of LPL in adipose tissue and muscle is not important for alpha-tocopherol transport to the tissue after alpha-tocopherol intake or that the amount transferred is small relative to the tissue concentration. Furthermore, Triton WR1339 injection tended to elevate the serum gamma-tocopherol (P=0.071) and alpha-tocotrienol (P=0.053) concentrations and lowered them (P<0.05) in the liver and adrenal gland of rats administered gamma-tocopherol or alpha-tocotrienol. These data suggest that lipolysis of triacylglycerol-rich chylomicron by LPL is necessary for postprandial vitamin E transport to the liver and subsequent transport to the other tissues.
Identities and differences in the metabolism of tocotrienols and tocopherols in HepG2 cells
Birringer M, Pfluger P, Kluth D, Landes N, Brigelius-Flohé R.
J Nutr. 2002 Oct;132(10):3113-8.
The metabolism of alpha- and gamma-tocotrienol was investigated in HepG2 cells. Metabolites were identified by HPLC and gas chromatography/mass spectrometry. gamma-Tocotrienol was degraded to gamma-CEHC (carboxyethyl hydroxychroman), gamma-CMBHC (carboxymethylbutyl hydroxychroman), gamma-CMHenHC (carboxymethylhexenyl hydroxychroman), gamma-CDMOenHC (carboxydimethyloctenyl hydroxychroman) and gamma-CDMD(en)(2)HC (carboxydimethyldecadienyl hydroxychroman). alpha-Tocotrienol yielded alpha-CEHC, alpha-CMBHC, alpha-CMHenHC and alpha-CDMOenHC, whereas alpha-CDMD(en)(2)HC could not be detected. These findings demonstrate that the trienols are metabolized essentially like tocopherols, i.e., by omega-oxidation followed by beta-oxidation of the side chain. The failure to detect CMBHC with the original double bond in the side chain reveals that auxiliary enzymes are involved, as in the metabolism of unsaturated fatty acids. CMBHC were the most abundant metabolites obtained from the tocotrienols as well as from alpha-tocopherol. Quantitatively, the tocotrienols were degraded to a larger extent than their counterparts with saturated side chains. The pronounced quantitative differences in the metabolism between individual tocopherols as well as between tocotrienols and tocopherols in vitro suggest a corresponding lack of equivalence in vivo.