Hexane extracts obtained from Hordeum vulgare L. (barley), Avena sativa L. (oat), Triticum spelta Schrank and Triticum dicoccum Schrank ex Schübler (spelt or emmer) whole grains, were examined for their tocochromanol (tocopherol and tocotrienol) content. The analyses were carried out on fatty extracts by means of HPLC coupled with a coulometric array electrochemical detector (ECD). Due to the specific high selectivity of the detector, the sample can be directly injected without any preliminary treatment (e.g., saponification). Eight tocochromanol isomers have been detected in barley grains. Different barley cultivars examined showed a tocochromanol content ranging from 1620 to 1852 ng/g caryopses. Oat grains contained ca. 45 ng/g caryopses and Triticum species ca.1070 ng/g caryopses. The results are considered in view of a potential use of vitamin E derivatives as human health enhancer and as sources of antioxidants for food lipid preservation.
Uncategorized
Vitamin E is an essential nutrient of still increasing economic importance. Vitamin E derivatives include many nonracemic chiral compounds whose chirooptical characterization is scarcely described in the literature. We report the CD spectra of delta-tocopherol and its unsaturated analog delta-tocotrienol. TDDFT calculations demonstrate that the weak CD of delta-tocopherol is determined by the helicity of dihydropyrane ring. In addition, the moderate CD of delta-tocotrienol is due to the exciton interaction between the aromatic ring and the closest alkene group. Direct exciton-coupled CD calculations on structures generated by two different conformational sampling approaches reveal that, although such exciton coupling is expected to be weak, it is sufficient to explain the spectral differences between tocopherol and tocotrienol.
This study was conducted to determine the effectiveness of three forms of vitamin E supplements following nicotine treatment on bone histomorphometric parameters in an adult male rat model. Rats were divided into seven groups: baseline (B, killed without treatment), control (C, normal saline for 4 months), nicotine (N, nicotine for 2 months), nicotine cessation (NC), tocotrienol-enhanced fraction (TEF), gamma-tocotrienol(GTT), and alpha-tocopherol (ATF). Treatments for the NC, TEF, GTT, and ATF groups were performed in two phases. For the first 2 months they were given nicotine (7 mg/kg), and for the following 2 months nicotine administration was stopped and treatments with respective vitamin E preparations (60 mg/kg) were commenced except for the NC group, which was allowed to recover without treatment. Rats in the N and NC groups had lower trabecular bone volume, mineral appositional rate (MAR), and bone formation rate (BFR/BS) and higher single labeled surface and osteoclast surface compared to the C group. Vitamin E treatment reversed these nicotine effects. Both the TEF and GTT groups, but not the ATF group, had a significantly higher trabecular thickness but lower eroded surface (ES/BS) than the C group. The tocotrienol-treated groups had lower ES/BS than the ATF group. The GTT group showed a significantly higher MAR and BFR/BS than the TEF and ATF groups. In conclusion, nicotine induced significant bone loss, while vitamin E supplements not only reversed the effects but also stimulated bone formation significantly above baseline values. Tocotrienol was shown to be slightly superior compared to tocopherol. Thus, vitamin E, especially GTT, may have therapeutic potential to repair bone damage caused by chronic smoking.
In vivo studies show that alpha-tocotrienol and gamma-tocotrienol accumulate in adipose tissue. Furthermore, a recent study reports that the oral administration of gamma-tocotrienol from a tocotrienol-rich fraction from palm oil (TRF) decreases body fat levels in rats. The objective of this study was to evaluate the effect of TRF and its components on adipocyte differentiation in 3T3-L1 preadipocytes, which differentiated into adipocytes in the presence of 1.8 micromol/L insulin. TRF suppressed the insulin-induced mRNA expression of adipocyte-specific genes such as PPARgamma, adipocyte fatty acid-binding protein (aP2), and CCAAT/enhancer-binding protein-alpha (C/EBPalpha) compared with the differentiation of 3T3-L1 preadipocytes into adipocytes only in the presence of insulin. To confirm the suppressive effect of TRF, the major components of TRF, such as alpha-tocotrienol, gamma-tocotrienol, and alpha-tocopherol, were investigated. Alpha-tocotrienol and gamma-tocotrienol decreased the insulin-induced PPARgamma mRNA expression by 55 and 90%, respectively, compared with insulin, whereas alpha-tocopherol increased the mRNA expression. In addition, gamma-tocotrienol suppressed the insulin-induced aP2 and C/EBPalpha mRNA expression, triglyceride accumulation, and PPARgamma protein levels compared with insulin. The current results also revealed that gamma-tocotrienol inhibited the insulin-stimulated phosphorylation of Akt but not extracellular signal-regulated kinase (ERK)1/2 in the insulin signaling pathway of 3T3-L1 preadipocytes. Thus, the antiadipogenic effect of TRF depends on alpha-tocotrienol and gamma-tocotrienol, and gamma-tocotrienol may be a more potent inhibitor of adipogenesis than alpha-tocotrienol. Therefore, the results of this study suggest that tocotrienol suppresses insulin-induced differentiation and Akt phosphorylation in 3T3-L1 preadipocytes. Furthermore, tocotrienol could act as an antiadipogenic vitamin in the nutrient-mediated regulation of body fat through its effects on differentiation.
This study investigates the effects of tocotrienol (TT) or alpha-tocopherol (TF) supplementation on corticosterone level, noradrenalin level and gastric lesions in rats exposed to restraint stress. Twenty-four male Sprague Dawley rats were randomly assigned into 4 equally sized groups; two control groups were given olive oil, while the treated group was supplemented with either tocotrienol of tocopherol orally at a dose of 60 mg/kg body weight. After 28 days of treatment, one control group, TT group and TF group were subjected to restraint stress, 2 hours daily for 4 consecutive days. After the last exposure to stress, plasma samples were taken to determine the corticosterone and noradrenalin levels, after which the rats were sacrificed. The stomach was excised for the evaluation of gastric lesions. Our findings showed that TT and TF were able to maintain the corticosterone level to the prestress values, while only TT was able to maintain the noradrenalin level in rats exposed to stress. Tocotrienol was found to be better in preventing formation of gastric lesions compared to TF. As a conclusion, the protective effect of vitamin E was related to the ability to inhibit stress induced elevation of corticosterone and noradrenalin levels.
Vitamin E in nature is comprised of a family of tocopherols and tocotrienols. The most studied of these is alpha-tocopherol (alpha-TOH), because this form is retained within the body, and vitamin E deficiency is corrected with this supplement. alpha-TOH is a lipid-soluble antioxidant required for the preservation of cell membranes, and it potentially acts as a defense against oxidative stress. Many studies have investigated the metabolism, transport, and efficacy alpha-TOH in the prevention of sequelae associated with cardiovascular disease (CVD). Supplementation with vitamin E is considered to provide health benefits against CVD through its antioxidant activity, the prevention of lipoprotein oxidation, and the inhibition of platelet aggregation. However, the results from large prospective, randomized, placebo-controlled clinical trials with alpha-TOH have been largely negative. A recent meta-analysis suggests that alpha-TOH supplements may actually increase all-cause mortality; however, the mechanism for this increased risk is unknown. In vitro studies performed in human cell cultures and animal models suggest that vitamin E might increase the hepatic production of cytochrome P450s and MDR1. Induction of CYP3A4 or MDR1 by vitamin E could potentially lower the efficacy of any drug metabolized by CYP3A4 or MDR1. Other possibilities include an adverse effect of alpha-TOH on blood pressure in high-risk populations. Because of the wide popularity and use of vitamin E supplements, further research into potential adverse effects is clearly warranted.
Tocopherol and tocotrienol compositions were studied in 175 genotypes of different wheat types grown under similar conditions to screen for natural diversity. The main focus was on bread wheats, including 130 and 20 winter and spring types, respectively. The average total content of tocopherols and tocotrienols was 49.4 microg/g of dm, with a range of 27.6-79.7 microg/g of dm, indicating a 2.9-fold variation among genotypes. Beta-tocotrienol and alpha-tocopherol were the major vitamers, and in general there were more tocotrienols than tocopherols. In the early cultivated forms of wheat the proportion of tocotrienols was especially high, at >or=62.5%. In conclusion, there was a large variation in total tocopherol and tocotrienol contents in bread wheats and this, along with the high proportions of tocotrienols in other types of wheat, demonstrates the great genetic potential of genotypes to be exploited by plant breeders.
The biosynthesis of natural products in a fast growing and easy to manipulate heterologous host system, such as Escherichia coli, is of increasing interest in biotechnology. This procedure allows the investigation of complex natural product biosynthesis and facilitates the engineering of pathways. Here we describe the cloning and the heterologous expression of tocochromanol (vitamin E) biosynthesis genes in E. coli. Tocochromanols are synthesized solely in photosynthetic organisms (cyanobacteria, algae, and higher green plants). For recombinant tocochromanol biosynthesis, the genes encoding hydroxyphenylpyruvate dioxygenase (hpd), geranylgeranylpyrophosphate synthase (crtE), geranylgeranylpyrophosphate reductase (ggh), homogentisate phytyltransferase (hpt), and tocopherol-cyclase (cyc) were cloned in a stepwise fashion and expressed in E. coli. Recombinant E. coli cells were cultivated and analyzed for tocochromanol compounds and their biosynthesis precursors. The expression of only hpd from Pseudomonas putida or crtE from Pantoea ananatis resulted in the accumulation of 336 mg L(-1) homogentisate and 84 microg L(-1) geranylgeranylpyrophosphate in E. coli cultures. Simultaneous expression of hpd, crtE, and hpt from Synechocystis sp. under the control of single tac-promoter resulted in the production of methyl-6-geranylgeranyl-benzoquinol (67.9 microg g(-1)). Additional expression of the tocopherol cyclase gene vte1 from Arabidopsis thaliana resulted in the novel formation of a vitamin E compound-delta-tocotrienol (15 microg g(-1))-in E. coli.
The tocotrienol vitamin E has potent antioxidant property, however absorption is low due to high lipid solubility. A self emulsifying preparation of tocotrienol rich vitamin E (SF-TRE) had been reported to increase their bioavailability. This randomized, placebo controlled, blinded end point clinical study aimed to determine the effects of 50, 100 and 200 mg daily of SF-TRE and placebo for two months on arterial compliance and vitamin E blood levels. Assessment of arterial compliance by carotid femoral pulse wave velocity (PWV) and augmentation index (AI), plasma vitamin E, serum total cholesterol and low density lipoprotein cholesterol were taken before and after 2 months’ treatment in 36 healthy males. Un-supplemented tocotrienollevels were low, after treatment, all SF-TRE treated groups had significantly higher plasma alpha, delta and delta tocotrienol concentrations compared to placebo. Augmentation index change from baseline to end of treatment for groups placebo, 50, 100, and 200 mg were 2.22+/-1.54, -6.59+/-2.84, -8.72+/-3.77, and -6.27+/-2.67% respectively (p=0.049, 0.049, and 0.047 respectively). Groups 100 and 200 mg showed significant improvement after treatment with pulse wave velocity reductions of 0.77 m/s and 0.65 m/s respectively (p=0.007 and p=0.002). There was no effect of SF-TRE on serum lipids. We conclude that there was a trend towards improvement in arterial compliance with 2 months’ of SF-TRE.
The oxidative metabolism of tocopherols and tocotrienols by monooxygenases is a key factor in the plasma and tissue clearance of forms of vitamin E other than alpha-tocopherol. It is well known that a commonly ingested form of vitamin E, gamma-tocopherol, has greatly reduced plasma half-life (faster clearance) than alpha-tocopherol. The tocotrienols are metabolized even faster than gamma-tocopherol. Both gamma-tocopherol and alpha- and delta-tocotrienol possess intriguing biological activities that are different from alpha-tocopherol, making them potentially of interest for therapeutic use. Unfortunately, the fast clearance of non-alpha-tocopherols from animal tissues is a significant hurdle to maximizing their effect(s) as dietary supplements. We report here the design and synthesis of N-heterocycle-containing analogues of alpha-tocopherol that act as inhibitors of Cyp4F2, the key monooxygenase responsible for omega-hydroxylation of the side chain of tocols. In particular, an omega-imidazole containing compound, 1, [(R)-2-(9-(1H-imidazol-1-yl)nonyl)-2,5,7,8-tetramethylchroman-6-ol] had an ED(50) for inhibition of gamma-CEHC production from gamma-tocopherol of approximately 1 nM when tested in HepG2 cells in culture. Furthermore, feeding of 1 to mice along with rapidly metabolized delta-tocopherol, resulted in a doubling of the delta-tocopherol/alpha-tocopherol ratio in liver (P<0.05). Thus, 1 may be a useful adjuvant to the therapeutic use of non-alpha-tocopherols.