Tocopherols and tocotrienols (Vitamin E) are part of a group of “minor components” of main interest, present in the unsaponifiable fraction of many samples. Their importance in biological, metabolical and nutritional studies makes determination of tocopherols and related compounds of major interest. Present work critically reviews the different ways to perform sample pre-treatment and analysis of these compounds, related to the matrices, other analytes to be measured, sensitivity, and simplicity. The review includes well referenced tables that provide in-depth summaries of methodology for the chromatographic analysis of alpha-tocopherol and related compounds in foods, pharmaceuticals, plants, animal tissues and other matrices.
Uncategorized
The metabolism of tocotrienol remains unclear. We studied the distribution of tocotrienol in rats fed the tocotrienol-rich fraction extracted from palm oil. We have previously shown that dietary sesame seeds markedly elevate the tocopherol concentration in rats. In this study, we also examined the effect of dietary sesame seeds on the tocotrienol concentration. In experiment 1, rats (4-wk-old) were fed the diet with alpha-tocopherol alone or with alpha- and gamma-tocotrienols. In experiment 2, the effect of dietary sesame seeds on tocopherol and tocotrienol concentrations in rats fed the diet with tocopherol and tocotrienol was studied. The rats were fed the experimental diet for 8 wk in both experiments. alpha- and gamma-Tocotrienols accumulated in the adipose tissue and skin, but not in plasma or other tissues, of the rats fed tocotrienols. Dietary sesame seeds elevated (P < 0.05) tocotrienol concentrations in the adipose tissue and skin, but did not affect their concentrations in other tissues or in plasma. The gamma-tocopherol concentration in all tissues and plasma of rats fed gamma-tocopherol was extremely low but was elevated (P < 0.05) in many tissues by feeding sesame seeds. These data suggest that the transport and tissue uptake of vitamin E isoforms are different. Dietary sesame seeds elevate the concentrations of both tocopherols and tocotrienols.
Vitamin E consists of a number of compounds, tocopherols and tocotrienols, that function as lipid-soluble antioxidants. A hypothesis is that vitamin E may slow the progression of atherosclerosis by blocking the oxidative modification of low-density lipoprotein cholesterol and thus decrease its uptake into the arterial lumen. Basic science and animal studies have generally supported this hypothesis. Observational studies have primarily assessed patients with no established coronary heart disease (CHD), and results have generally supported a protective role of vitamin E in CHD. Early primary and secondary prevention clinical trials (Alpha-Tocopherol, Beta-Carotene Cancer Protection study and Cambridge Heart Antioxidant Study) showed mixed results. Despite years of encouraging evidence from basic science and observational studies, 3 large randomized clinical trials (Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto miocardico, Heart Outcomes Prevention Evaluation, and Primary Prevention Project) with a combined total of more than 25,000 patients failed to show a significant benefit with vitamin E taken as a dietary supplement for the prevention of CHD. Four large randomized primary prevention trials currently under way should add to our knowledge. The American Heart Association has recommended consumption of a balanced diet with emphasis on antioxidant-rich fruits and vegetables but has made no recommendations regarding vitamin E supplementation for the general population. Although vitamin E supplementation seems to be safe for most people, recommendations from health care professionals should reflect the uncertainty of established benefit as demonstrated in clinical trials.
We are studying novel tocotrienols, which have a number of activities that might interfere with the formation of atherosclerotic plaques, including hypocholesterolemic, antioxidant, anti-inflammatory and antiproliferation effects. This study compared the effects of alpha-tocopherol, the tocotrienol-rich fraction (TRF(25)) and didesmethyl tocotrienol (d-P(25)-T3) of rice bran on the pathogenesis of atherosclerotic lesions in C57BL/6 apolipoprotein (apo)E-deficient (-/-) mice. These mice are an excellent model because they become hyperlipidemic even when they consume a low fat diet and they develop complex atherosclerotic lesions similar to those of humans. These compounds were also tested in wild-type C57BL/6 apoE (+/+) and (+/-) mice fed low or high fat diets. When a high fat diet was supplemented with alpha-tocopherol, TRF(25) or d-P(25)-T3 and fed to mice (+/+) for 24 wk, atherosclerotic lesion size was reduced 23% (P = 0.33), 36% (P = 0.14) and 57% (P < 0.02), respectively, and in mice (+/-) fed for 18 wk, lesions were reduced by 19% (P = 0.15), 28% (P < 0.01) and 33% (P < 0.005), respectively, compared with mice fed a control diet. A low fat diet did not cause atherosclerotic lesions in these mice. The low fat diet supplemented with TRF(25) or d-P(25)-T3 fed to apoE-deficient (-/-) mice for 14 wk decreased atherosclerotic lesion size by 42% (P < 0.04) and 47% (P < 0.01), respectively, whereas alpha-tocopherol supplementation resulted in only an 11% (P = 0.62) reduction. These results demonstrate the superior efficacy of tocotrienols compared with alpha-tocopherol. Althoughtocotrienols decreased serum triglycerides, total and LDL cholesterol levels, the decreases in atherosclerotic lesions seem to be due to the other activities. Serum tocol concentrations in various groups are also described. This is the first report of a significant reduction in the atherosclerotic lesion size in all three genotypes of apoE mice fed a novel tocotrienol (d-P(25)-T3) of rice bran. Dietary tocotrienol supplements may provide a unique approach to promoting cardiovascular health.
The balance between the vitamin E (tocochromanols) and polyunsaturated fatty acid (PUFA) contents mainly determines the susceptibility to lipid peroxidation and the storage stability of corn oil. In 1997, field experiments were conducted at two different locations to evaluate a collection of 30 corn hybrids for fatty acid profiles and tocochromanol contents. Hybrids differed significantly (p < 0.01) for major fatty acids, as well as for tocochromanol contents and composition. The major fatty acids were palmitic, oleic, and linoleic acids, whose contents were in the ranges 9.2-12.1%, 19.5-30.5%, and 53.0-65.3%, respectively. The tocopherol contents ranged as follows: alpha-tocopherol, 67-276 mg (kg of oil)(-1); beta-tocopherol, 0-20 mg (kg of oil)(-1); gamma-tocopherol, 583-1048 mg (kg of oil)(-1); delta-tocopherol, 12-71 mg (kg of oil)(-1); total tocopherol, 767-1344 mg (kg of oil)(-1). gamma-Tocopherol was the predominant derivative among all tocopherols. The tocotrienol contents were in the ranges 46-89, 53-164, and 99-230 mg (kg of oil)(-1) for alpha-, gamma-, and total tocotrienol contents, respectively. The tocotrienol profile was not characterized by the predominance of any tocotrienol homologue. alpha-Tocopherol was positively correlated with PUFA (r = 0.41) and with the vitamin E equivalent (vit E equiv) (r = 0.84), and it was not correlated with gamma-tocopherol. gamma-Tocopherol was highly correlated with total tocopherol and tocochromanol contents (r = 0.93 and r = 0.90, respectively), indicating that the contribution of this vitamer to the total tocochromanol content is the most important among all tocochromanols. The high positive correlation found between the vit E/PUFA ratio and the vit E equiv, as well as the absence of correlation between this ratio and PUFA indicates that a higher vit E/PUFA ratio can be easier achieved be increasing the vitamin E content than by modifying fatty acid profile in corn oil.
Tocotrienols are added as antioxidants to food. As there have been no reports of toxicological evaluation, a 13-week oral toxicity study was performed in Fischer 344 rats of both sexes at dose levels of 0 (group 1), 0.19 (group 2), 0.75 (group 3) and 3% (group 4) of a preparation in powdered diet. Suppression of body weight gain was observed in group 4 males. On hematological examination, significant decrease in mean corpuscular volume (MCV) was observed in all treated males. Platelets were significantly reduced in group 3 and 4 males. Hemoglobin concentration, MCV, mean corpuscular hemoglobin and mean corpuscular hemoglobin concentration were significantly decreased in group 3 and 4 females and hematocrit in group 4 females. On serum biochemical examination, increase in the albumin/globulin ratio (A/G) and alkaline phosphatase in all treated males, elevated alanine transaminase in group 4 of both sexes and increases in asparagine transaminase and gamma-glutamyl transaminase in group 4 females were observed. With regard to relative organ weights, liver weights in group 4 of both sexes and adrenal weights in all treated males demonstrated an increase, and ovary and uterus weights in group 4 females were reduced. Histopathologically, slight hepatocellular hypertrophy in group 3 and 4 males, and reduction of cytoplasmic vacuolation in the adrenal cortical region in group 4 males were observed. Because of pathological changes in male liver and hematological changes in females, the no-observed-adverse-effect level (NOAEL) was concluded to be 0.19% in the diet (120 mg/kg body weight/day for male rats and 130 mg/kg body weight/day for female rats). As a decrease in MCV, an increase in the A/G, elevation of alkaline phosphatase and increase in adrenal weight were observed in all treated males, a no-observed-effect level (NOEL) could not be determined in this examination.
This study investigated the effects of a tocotrienol-rich fraction (TTRF) on the microscopic development of atherosclerosis and lipid peroxidation in the aorta of rabbits. Group 1 was fed a normal diet, group 2 received a 2% cholesterol diet and group 3 received a 2% cholesterol diet plus daily oral administration of the TTRF. After 10 weeks, the aortic content of malondialdehyde (MDA) was measured as an index of lipid peroxidation. The MDA was lowest in rabbits that received the TTRF compared to the groups that did not. The degree of intimal thickening was higher in the cholesterol-fed rabbits without the TTRF compared to the cholesterol-fed rabbits with TTRF (P<0.05). The continuity of the internal elastic lamina (IEL) was noted to be preserved in the cholesterol-fed rabbits with TTRF but appeared disrupted in the cholesterol-fed rabbits without the TTRF. The disrupted and fragmented IEL may have resulted from the injury caused by lipid peroxidation that contributed to the more extensive intimal thickening. We conclude that the antioxidant activities of the TTRF can reduce experimental atherosclerosis.
Separations of lipid antioxidants, tocopherols (T) and tocotrienols (T3), on octylsilica (OS), octadecylsilica (ODS), phenylsilica, or silica were studied by capillary electrochromatography (CEC)-UV detection. The homologues and isomers of the vitamin E-active compounds were best separated with an OS column. CEC with an ODS column tended to yield broad peaks with poor resolution. Among the various mobile phases evaluated, [acetonitrile-methanol (64:36)]-[25 mM tris(hydroxymethyl)aminomethane, pH 8] (95:5) eluent systems produced the most satisfactory results. Under these conditions, a baseline separation of an 11-component mixture was obtained with elution order similar to that observed in reversed-phase HPLC: deltaT3 > (gamma+beta)T3 > alphaT3 > epsilonT > (delta+zeta2)T > (gamma+beta)T > alphaT > alphaT-acetate. CEC of the antioxidant acetates led to separations inferior to those of the parent compounds. Effects of CEC experimental variables (e.g., mobile phase solvents and buffers, stationary phases and electric field) on analyte separations were assessed in the context of resolution factors and retention factors.
Natural vitamin E includes four tocopherols and four tocotrienols. RRR-alpha-tocopherol is the most abundant form in nature and has the highest biological activity. Although vitamin E is the main lipid-soluble antioxidant in the body, not all its properties can be assigned to this action. As antioxidant, vitamin E acts in cell membranes where prevents the propagation of free radical reactions, although it has been also shown to have pro-oxidant activity. Non-radical oxidation products are formed by the reaction between alpha-tocopheryl radical and other free radicals, which are conjugated to glucuronic acid and excreted through the bile or urine. Vitamin E is transported in plasma lipoproteins. After its intestinal absorption vitamin E is packaged into chylomicrons, which along the lymphatic pathway are secreted into the systemic circulation. By the action of lipoprotein lipase (LPL), part of the tocopherols transported in chylomicrons are taken up by extrahepatic tissues, and the remnant chylomicrons transport the remaining tocopherols to the liver. Here, by the action of the “alpha-tocopherol transfer protein”, a major proportion of alpha-tocopherol is incorporated into nascent very low density lipoproteins (VLDL), whereas the excess of alpha-tocopherol plus the other forms of vitamin E are excreted in bile. Once secreted into the circulation, VLDL are converted into IDL and LDL by the action of LPL, and the excess of surface components, including alpha-tocopherol, are transferred to HDL. Besides the LPL action, the delivery of alpha-tocopherol to tissues takes place by the uptake of lipoproteins by different tissues throughout their corresponding receptors. Although we have already a substantial information on the action, effects and metabolism of vitamin E, there are still several questions open. The most intriguing is its interaction with other antioxidants that may explain how foods containing small amounts of vitamin E provide greater benefits than larger doses of vitamin E alone.
Synthetic alpha-tocotrienol was separated into four geometrical E/Z side chain isomers by preparative HPLC (permethylated beta-cyclodextrin phase). The isolated isomers were resolved in ethylene glycol dimethyl ether, converted into the corresponding methyl ether using dimethyl sulfate, and the tocotrienol methyl ethers were extracted with n-hexane. A subsequent HPLC separation on a chiral phase (adsorbent cellulose derivated with 3,5-dimethyl phenyl carbamate) discriminates between the enantiomers of each E/Z side chain isomer, achieving the complete resolution of the eight occurring synthetic RS,E/Z-alpha-tocotrienols. The method can be shortened by omitting the preparative separation of the E/Z tocotrienol isomers prior to the chromatography on the chiral dimethyl phenyl carbamate phase. The simplified method achieved the following separation: RS,E/Z-alpha-tocotrienol separated into five peaks, RS,E/Z-beta-tocotrienol into eight, RS,E/Z-gamma-tocotrienol into six and RS,E/Z-delta-tocotrienol into eight peaks. The naturally occurring R,E-E-tocotrienol isomer could be identified within the synthetic RS,E/Z-isomers by co-chromatography with tocotrienol methyl ethers derived from natural sources, respectively.