Tocotrienols, components belonging to vitamin E members, are used as potent therapeutics in the treatment of several diseases. Recent studies suggested tocotrienol to have better activity in many situations compared to tocopherols. Tocotrienols have been shown to lower the atherogenic apolipoprotein B and lipoprotein plasma levels. Additionally, tocotrienols with their anti-tumor effect together with anti-angiogenic and anti-thrombotic effects may serve as effective agents in cancer therapy. Besides these effects, some properties such as water insolubility and low stability limit the usage of tocotrienols in the clinic. However recent studies tried to increase the bioavailability with esterification and combination use. These efforts for the clinical usage of tocotrienols which may help them to take a wide place in the clinic and additional studies are needed to identify their therapeutical mechanisms.

Vitamin E family constitutes of tocopherol and tocotrienol. Each form has several isomers: alpha,beta, gamma, delta, desmo and didesmo. Although tocopherol is known much earlier, tocotrienol has been discovered more recently.Tocotrienol has higher antioxidant potential than tocopherol. Research shows that tocotrienol can inhibit the induced oxidative damage to lipids and proteins. Cholesterol biosynthesis pathway requires HMG Co A reductase. Tocotrienol degrades HMG Co A reductase protein and in turn lowers cholesterol synthesis. Tocotrienol can reverse ischemia-reperfusion which mediates cardiac dysfunction and induces c-Src protein expression. Tocotrienol prevents oxytosis and offers protection against Alzheimer’s disease, Parkinson’s disease, Hungtington’s disease. Tocotrienol exerts anticancer property through cell cycle arrest, induction of apoptosis, inhibition of angiogenesis; antitumor activity. Tocotrienol also possesses anti-inflammatory, antidiabetic, antiadipogenic and antiatherogenic effect.

An improved normal phase high performance liquid chromatographic (NP-HPLC) method was developed for simultaneous quantification of eight vitamin E isomers (α-, β-, γ- and δ-tocopherols and α-, β-, γ- and δ-tocotrienols) and γ-oryzanol in rice. A complete separation of all compounds was achieved within 25 min using an Inertsil CN-3, SIL-100A 5 μM (4.6 mm × 250 mm) column and an isocratic elution system of hexane/isopropanol/ethylacetate/acetic acid (97.6:0.8:0.8:0.8, v/v/v/v) at a flow rate varying from 0.7 to 1.5 mL min(-1). A linear correlation coefficient (r(2)>0.99) and high reproducibility were obtained at concentrations ranging 0.05-10 μg mL(-1) for vitamin E isomers and 0.5-500 μg mL(-1) for γ-oryzanol. This method proved to be rapid, accurate and reproducible.

This review emphasizes the effects of tocotrienols on the risk factors for atherosclerosis, plaque instability and thrombogenesis, and compares these effects with tocopherol. Tocotrienols reduce serum lipids and raise serum HDL-C. Alpha-tocopherol, on the other hand, has no effect on serum lipids. Tocotrienols have greater antioxidant activity than tocopherols. Both reduce the serum levels of C-reactive protein (CRP) and advanced glycation end products, and expression of cell adhesion molecules. The CRP-lowering effects of tocotrienols are greater than tocopherol. Tocotrienols reduce inflammatory mediators, δ-tocotrienol being more potent, followed by γ- and α-tocotrienol. Tocotrienols are antithrombotic and suppress the expression of matrix metalloproteinases. They suppress, regress and slow the progression of atherosclerosis, while tocopherol only suppresses, and has no effect on regression and slowing of progression of atherosclerosis. Tocotrienol reduces risk factors for destabilization of atherosclerotic plaques. There are no firm data to suggest that tocotrienols are effective in reducing the risk of cardiac events in established ischemic heart disease. Alpha-tocopherol is effective in primary prevention of coronary artery disease (CAD), but has no conclusive evidence that it has beneficial effects in patients with established ischemic heart disease. Tocotrienols are effective in reducing ischemia-reperfusion cardiac injury in experimental animals and has the potential to be used in patients undergoing angioplasty, stent implantation and aorto-coronary bypass surgery. In conclusion, experimental data suggest that tocotrienols have a potential for cardiovascular health, but long-term randomized clinical trials are needed to establish their efficacy in primary and secondary prevention of CAD.

 The worldwide cardiovascular disease (CVD) burden has resulted in an intense interest in pharmaceutical approaches to combat this multifactorial disease. Vitamins are high-flying among natural or endogenous compounds, considered to be beneficial to human health and have become attractive targets for research. Of all the vitamins, tocopherols and tocotrienols, parent congeners in the vitamin E family, are found to be effective in decreasing mortality due to CVD. As understanding of the antioxidant effect of this vitamin evolved, tocotrienols gained eminence in recent years and researchers begun to further study the biological effects of it. Tocotrienols have several cardioprotective effects; including antagonizing the oxidation of low density lipoproteins, anti atherosclerotic, inhibiting platelet aggregation and monocyte adhesion, preventing smooth muscle proliferation and various other cardiovascular disorders. Recent studies have also revealed the molecular targets of the tocotrienols and their roles in cancer, bone resorption, diabetes and neurological diseases at both preclinical and clinical levels. The multitargeted role of tocotrienols in most degenerative diseases proves it to be an ideal candidate as a nutraceutical/pharmaceutical agent for useful exploitation.

BACKGROUND: The bran part of red rice grain is concentrated with many phytochemicals, including proanthocyanidins, oryzanol and vitamin E, that exert beneficial effects on human health, but it contains low levels of essential minerals such as Fe and Zn. In the present study, the protein, lipid, phytochemicals and mineral contents in bran samples were compared among red rice SA-586 and its NaN₃-induced mutants.

RESULTS: The plant heights of NaN₃-induced mutants were decreased. The contents of protein, lipid, total phenolics, total flavonoids, total anthocyanins, total proanthocyanidins, total γ-oryzanol, total tocopherols and total tocotrienols also varied among the tested mutants. The brans of mutants M-18, M-56 and M-50 contained more proanthocyanidins, γ-oryzanol, vitamin E than that of SA-586, respectively. M-54 accumulated more Fe content (588.7 mg kg⁻¹ bran dry weight) than SA-586 (100.1 mg kg⁻¹ bran dry weight).

CONCLUSIONS: The brans of M-18, M-50 and M-56 are good sources of proanthocyanidins, vitamin E and γ-oryzanol, respectively, while the bran of M-54 is rich in Fe. Thus these mutants could be used to produce high-value phytochemicals or Fe byproducts from bran during rice grain milling or as genetic resources for rice improvement programs.

The increasing interest in antioxidant properties of cereal and cereal-based products has prompted the development of a simple and reliable HPLC method for the simultaneous determination of important phytochemicals like tocopherols (T), tocotrienols (T3) and carotenoids. Separation was carried out on a Nucleosil 100 C(18) column, 5 μm (250 mm × 4.6 mm) thermostated at 25 °C, using a linear gradient elution system starting with methanol and ending with a mixture of methanol-isopropanol-acetonitrile. All separated compounds including the internal standard (α-tocopherol acetate) were eluted within 16 min and detected by dual detection: fluorescence for tocopherols and tocotrienols at 290 nm excitation and 320 nm emission and UV-vis photodiode array detection for lutein and β-carotene at 450 nm. Detection limits ranged from 0.2 μg/g (β-carotene) to 1.60 μg/g (α-tocopherol). The intra- and inter-assay coefficients of variation were calculated by using cereals with different levels of lipophilic antioxidants. The extraction method involved sample saponification and clean-up by solid-phase extraction (SPE). The extraction recoveries obtained using OASIS HLB SPE cartridges and dichloromethane as eluent were in the range of 90.2-110.1%, with RSD lower than 10%. The method was successfully applied to cereals: durum wheat, bread wheat, rice, barley, oat, rye, corn and triticale.

The diterpene geranylgeraniol (all trans-3,7,11,15-tetramethyl-2,6,10,14-hexadecatetraen-1-ol) suppresses the growth of human liver, lung, ovary, pancreas, colon, stomach and blood tumors with undefined mechanisms. We evaluated the growth-suppressive activity of geranylgeraniol in murine B16 melanoma cells. Geranylgeraniol induced dose-dependent suppression of B16 cell growth (IC(50) = 55 ± 13 µmol/L) following a 48-h incubation in 96-well plates. Cell cycle arrest at the G1 phase, manifested by a geranylgeraniol-induced increase in the G1/S ratio and decreased expression of cyclin D1 and cyclin-dependent kinase 4, apoptosis detected by Guava Nexin™ assay and fluorescence microscopy following acridine orange and ethidium bromide dual staining, and cell differentiation shown by increased alkaline phosphatase activity, contributed to the growth suppression. Murine 3T3-L1 fibroblasts were 10-fold more resistant than B16 cells to geranylgeraniol-mediated growth suppression. Geranylgeraniol at near IC(50) concentration (60 µmol/L) suppressed the mRNA level of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase by 50%. The impact of geranylgeraniol on B16 cell growth, cell cycle arrest and apoptosis were attenuated by supplemental mevalonate, the product of HMG-CoA reductase that is essential for cell growth. Geranylgeraniol and d-δ-tocotrienol, a down-regulator of HMG-CoA reductase, additively suppressed the growth of B16 cells. These results support our hypothesis that mevalonate depletion mediates the tumor-specific growth-suppressive impact of geranylgeraniol. Geranylgeraniol may have potential in cancer chemoprevention and/or therapy.

γ-Tocotrienol (γ-T3) is a member of the vitamin E family. Recently, γ-T3 has attracted the attention of the scientific community due to its potent anticancer activity and other therapeutic benefits. The objective of this study was to develop and validate a simple and practical reversed-phase HPLC method with satisfactory sensitivity for the routine quantification of γ-T3 in rat and human plasma. The separation of γ-T3 from the plasma components was achieved with a C(18) reversed-phase column with an isocratic elution using a mixture of methanol, ethanol and acetonitrile (85:7.5:7.5, v/v/v) with a UV detection at 295 nm. γ-T3 was extracted from rat and human plasma by liquid-liquid extraction with an average recovery of 60%. The method proved linear in the range 100-5000 ng/mL. The inter-day precision ranged from 5.8 to 12.8% and the accuracy ranged from 92.4 to 108.5%, while the intra-day precision ranged from 0.7 to 7.9% in both rat and human plasma. This data confirm that the developed method has a satisfactory sensitivity, accuracy and precision for the quantification of γ-T3 in plasma. To assess its applicability the method was successfully applied to the quantitative analysis for pharmacokinetic studies of γ-T3 in rats administered a 10 mg/kg single oral dose.

We previously found that 2,7,8-trimethyl-2(2′-carboxyethyl)-6-hydroxychroman (γCEHC), a metabolite of the vitamin E isoforms γ-tocopherol or γ-tocotrienol, accumulated in the rat small intestine. The aim of this study was to evaluate tissue distribution of vitamin E metabolites. A single dose of α-tocopherol, γ-tocopherol or a tocotrienol mixture containing α- and γ-tocotrienol was orally administered to rats. Total amounts of conjugated and unconjugated metabolites in the tissues were measured by HPLC with an electrochemical detector, and 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (trolox) was used as an internal standard. Twenty-four hours later, the vitamin E isoforms were detected in most tissues and in the serum. However, 2,5,7,8-tetramethyl-2(2′-carboxyethyl)-6-hydroxychroman (αCEHC), a metabolite of α-tocopherol or α-tocotrienol, and γCEHC accumulated in the serum and in some tissues including the liver, small intestine and kidney. Administration of α-tocopherol increased the γCEHC concentration in the small intestine, suggesting that α-tocopherol enhances γ-tocopherol catabolism. In contrast, ketoconazole, an inhibitor of cytochrome P450 (CYP)-dependent vitamin E catabolism, markedly decreased the γCEHC concentration. These data indicate that vitamin E metabolite accumulates not only in the liver but also in the small intestine and kidney. We conclude that some dietary vitamin E is catabolized to carboxyethyl-hydroxychroman in the small intestine and is secreted into the circulatory system.

Read Full Article Here