Effect of Chemotherapeutics and Tocopherols on MCF-7 Breast Adenocarcinoma and KGN Ovarian Carcinoma Cell Lines In Vitro

Figueroa D, Asaduzzaman M, Young F

Abstract

The combination of doxorubicin and cyclophosphamide commonly used to treat breast cancer can cause premature ovarian failure and infertility. αTocopherol is a potent antioxidant whereas γtocopherol causes apoptosis in a variety of cancer models in vitro including breast cancer. We hypothesised that the combination of doxorubicin (Dox) and 4-hydroperoxycyclophosphamide (4-Cyc) would be more cytotoxic in vitro than each agent alone, and that αtocopherol would reduce and γtocopherol would augment the cytotoxicity of the combined chemotherapeutics. Human MCF-7 breast cancer and KGN ovarian cells were exposed to Dox, 4-Cyc, combined Dox and 4-Cyc, αtocopherolγtocopherol, or a combination of Dox and 4-Cyc with αtocopherol or γtocopherol. Cell viability was assessed using a crystal violet assay according to four schedules: 24h exposure, 24h exposure + 24h culture in medium, 24h exposure + 48h culture in medium, or 72h continuous exposure. Supernatants from each separate KGN culture experiment (n=3) were examined using an estradiol ELISA. Dox was cytotoxic to both MCF-7 and KGN cells, but 4-Cyc only killed MCF-7 cells. γTocopherol significantly decreased MCF-7 but not KGN cell viability. The combined chemotherapeutics and γtocopherol were more cytotoxic to MCF-7 than KGN cells, and αtocopherol reduced the cytotoxicity of the combined chemotherapeutics towards KGN ovarian cells, but not MCF-7 cells. The addition of both γtocopherol and αtocopherol to the chemotherapeutic combination of Dox and cyclophosphamide has the potential to increase in vitro chemotherapeutic efficacy against breast cancer cells whilst decreasing cytotoxicity towards ovarian granulosa cells.

Read More