Tocotrienols, like tocopherols, are members of the vitamin E family. While tocopherols (T) have been studied intensively, only recently havetocotrienols (T3) received increased attention due to their special health benefits. However, these positive attributes of T3 are probably lost as a result of degradation during food storage and processing, and there is little information about their oxidation products. Of particular interest are the oxidation products of α-tocotrienol (α-T3) as this is the least thermostable T3 isomer with the highest rate of degradation. The objective of this study was therefore to develop a reliable method for the determination of the most important oxidation products of α-T3 along with other tocochromanol isomers. We developed a high-performance liquid chromatography method with diode array detection, fluorescence detection, and a particle beam interface electron impact mass spectroscopy in order to separate the most important oxidation products of α-T3 (α-T3 spirodimers/spirotrimers, α-tocotrienoldihydroxy dimer, 7-formyl-β-tocotrienol (7-FβT3), 5-formyl-γ-tocotrienol (5-FγT3), α-tocotrienolquinone (α-T3Q), and α-T3Q dimers and α-tocotrienolquinone epoxides (α-T3QE)) from eight tocochromanol isomers. Furthermore, we sought to identify the as yet unknown oxidation products 5-FγT3, 7-FβT3, α-T3Q-dimer, and α-T3QE. Of these, 5-FγT3 was fully characterized by Fourier transform infrared spectroscopy and (1)H and (13)C nuclear magnetic resonance spectroscopy.