Abstract
Effect of long-term treatment with cigarette smoke extract (CSE) on the function and expression of P-glycoprotein (P-gp) in lung alveolar epithelial cells was examined using A549/P-gp cell line expressing P-gp. CSE treatment suppressed P-gp activity in a concentration- and treatment time-dependent manner. The suppression of P-gp activity by CSE was irreversible for at least 96 h after removal of CSE. In addition, CSE treatment suppressed the expression of P-gp mRNA and protein. In order to understand the mechanisms underlying P-gp suppression by CSE, the role of reactive oxygen species (ROS) was examined. CSE treatment increased intracellular ROS level, and suppressed catalase activity. α-Tocopherol suppressed ROS production by CSE, and ameliorated the suppression of P-gp activity by CSE, suggesting that ROS is involved in CSE-induced suppression of P-gp. The role of intracellular signaling pathways such as the nuclear factor κB and mitogen-activated protein kinase pathways was also examined. Among these pathways, the involvement of extracellular signal-regulated kinase (ERK) pathway was suggested. Taken together, long-term CSE treatment may suppress P-gp via modulation of ROS level and ERK pathway in alveolar epithelial cells.