Vitamin E Supplementation and Mitochondria in Experimental and Functional Hyperthyroidism: A Mini-Review

Napolitano G, Fasciolo G, Di Meo S, Venditti P

Nutrients. 2019 Dec 1;11(12). pii: E2900. doi: 10.3390/nu11122900.

Abstract

Mitochondria are both the main sites of production and the main target of reactive oxygen species (ROS). This can lead to mitochondrial dysfunction with harmful consequences for the cells and the whole organism, resulting in metabolic and neurodegenerative disorders such as type 2 diabetes, obesity, dementia, and aging. To protect themselves from ROS, mitochondria are equipped with an efficient antioxidant system, which includes low-molecular-mass molecules and enzymes able to scavenge ROS or repair the oxidative damage. In the mitochondrial membranes, a major role is played by the lipid-soluble antioxidant vitamin E, which reacts with the peroxyl radicals faster than the molecules of polyunsaturated fatty acids, and in doing so, protects membranes from excessive oxidative damage. In the present review, we summarize the available data concerning the capacity of vitamin E supplementation to protect mitochondria from oxidative damage in hyperthyroidism, a condition that leads to increased mitochondrial ROS production and oxidative damage. Vitamin E supplementation to hyperthyroid animals limits the thyroid hormone-induced increases in mitochondrial ROS and oxidative damage. Moreover, it prevents the reduction of the high functionality components of the mitochondrial population induced by hyperthyroidism, thus preserving cell function.

Read More

Differentially expressed plasma proteins of β-thalassemia/hemoglobin E patients in response to curcuminoids/vitamin E antioxidant cocktails

Panachan J, Chokchaichamnankit D, Weeraphan C, Srisomsap C, Masaratana P, Hatairaktham S, Panichkul N, Svasti J, Kalpravidh RW

Hematology. 2019 Dec;24(1):300-307. doi: 10.1080/16078454.2019.1568354.

Abstract

OBJECTIVE:

Iron overload and oxidative stress are the major causes of serious complications and mortality in thalassemic patients. Our previous work supports the synergistic effects of antioxidant cocktails (curcuminoids or vitamin E, N-acetylcysteine, and deferiprone) in treatment of β-thalassemia/Hb E patients. This further 2-DE-based proteomic study aimed to identify the plasma proteins that expressed differentially in response to antioxidant cocktails.

METHODS:

Frozen plasma samples of ten normal subjects and ten β-thalassemia/Hb E patients at three-time points (baseline, month 6, and month 12) were reduced the dynamic range of proteome using ProteoMiner kit and separated proteins by two-dimensional gel electrophoresis. Differentially expressed proteins were identified using tandem mass spectrometry. Several plasma proteins were validated by ELISA and Western blot analysis.

RESULTS:

Thirteen and 11 proteins were identified with altered expression levels in the curcuminoids- and vitamin E cocktail groups, respectively. The associations between vitronectin (VTN) expression and total bilirubin levels, as well as between serum paraoxonase/arylesterase 1 (PON1) expression and blood reactive oxygen species were observed. Validation results were consistent with proteomics results.

DISCUSSION AND CONCLUSIONS:

These plasma proteins may provide better understanding of the mechanisms underlying the therapeutic effects of antioxidant cocktails in thalassemic patients.

Read More

ROS-induced NLRP3 inflammasome priming and activation mediate PCB 118- induced pyroptosis in endothelial cells.

Long Y, Liu X, Tan XZ, Jiang CX, Chen SW, Liang GN, He XM, Wu J, Chen T, Xu Y

Ecotoxicol Environ Saf. 2019 Nov 27:109937. doi: 10.1016/j.ecoenv.2019.109937.

Abstract

Growing epidemiological evidence has shown that exposure to polychlorinated biphenyls (PCBs) is harmful to the cardiovascular system. However, how PCB 118-induced oxidative stress mediates endothelial dysfunction is not fully understood. Here, we explored whether and how PCB 118 exposure-induced oxidative stress leads to NLRP3 inflammasome-dependent pyroptosis in endothelial cells. As expected, PCB 118 was cytotoxic to HUVECs and induced caspase-1 activation and cell membrane disruption, which are characteristics of pyroptosis. Moreover, PCB 118-induced pyroptosis may have been due to the activation of the NLRP3 infammasomes. PCB 118 also induced excessive reactive oxygen species (ROS) in HUVECs. The ROS scavenger (±)-α-tocopherol and the NFκB inhibitor BAY11-7082 reversed the upregulation of NLRP3 expression and the increase in NLRP3 inflammasome activation induced by PCB 118 exposure in HUVECs. Additionally, PCB 118-induced oxidative stress and pyroptosis were dependent on Aryl hydrocarbon receptor (AhR) activation and subsequent cytochrome P450 1A1 upregulation, which we confirmed by using the AhR selective antagonist CH 223191. These data suggest that PCB 118 exposure induces NLRP3 inflammasome activation and subsequently leads to pyroptosis in endothelial cells in vitro and in vivo. AhR-mediated ROS production play a central role in PCB 118-induced pyroptosis by priming NFκB-dependent NLRP3 expression and promoting inflammasome activation.

Read More

Synthesis, DFT Calculations, and In Vitro Antioxidant Study on Novel Carba-Analogs of Vitamin E

Baj A, Cedrowski J, Olchowik-Grabarek E, Ratkiewicz A, Witkowski S

Antioxidants (Basel). 2019 Nov 26;8(12). pii: E589. doi: 10.3390/antiox8120589.

Abstract

Vitamin E is the most active natural lipophilic antioxidant with a broad spectrum of biological activity. α-Tocopherol (α-T), the main representative of the vitamin E family, is a strong inhibitor of lipid peroxidation as a chain-breaking antioxidant. Antioxidant and antiradical properties of vitamin E result from the presence of a phenolic hydroxyl group at the C-6 position. Due to stereoelectronic effects in the dihydropyranyl ring, the dissociation enthalpy for phenolic O-H bond (BDEOH) is reduced. The high chain-breaking reactivity of α-T is mainly attributed to orbital overlapping of the 2p-type lone pair on the oxygen atom (O1) in para position to the phenolic group, and the aromatic π-electron system. The influence of the O1 atom on the antioxidant activity of vitamin E was estimated quantitatively. The all-rac-1-carba-α-tocopherol was synthesized for the first time. Along with model compounds, 1-carba-analog of Trolox and its methyl ester were screened for their in vitro antioxidant activity by inhibition of styrene oxidation, and for the radical-reducing properties by means of 2,2-diphenyl-1-picrylhydrazyl free radical (DPPH) scavenging assay. To study the antioxidant activity, density functional theory (DFT) was also applied. Reaction enthalpies related to HAT (hydrogen atom transfer), SET-PT (sequential electron transfer-proton transfer), and SPLET (sequential proton loss-electron transfer) mechanisms were calculated.

Read More

Development of a Novel Pharmaceutical Formula of Nanoparticle Lipid Carriers of Gentamicin/α-Tocopherol and In Vivo Assessment of the Antioxidant Protective Effect of α-Tocopherol in Gentamicin-Induced Nephrotoxicity

Elfaky MA, Thabit AK, Sirwi A, Fahmy UA, Bahabri RM, Al-Awad EA, Basaeed LF

Antibiotics (Basel). 2019 Nov 25;8(4). pii: E234. doi: 10.3390/antibiotics8040234.

Abstract

Gentamicin is a potent antibiotic with a nephrotoxicity drawback which limits its use. D-α-tocopherol polyethylene glycol succinate (α-tocopherol) is widely used as a surfactant and have potent antioxidant properties. This study aimed to assess the protective effect of α-tocopherol on gentamicin-induced nephrotoxicity by loading gentamicin on nanostructured lipid carriers (NLC). In vivo, the product was administered intravenously to three groups of rabbits (control, gentamicin and gentamicin/α-tocopherol NLC) for 10 consecutive days. Blood was collected on days 1, 5 and 10 to assess renal function. A significant difference in all plasma parameters related to kidney function were observed in the gentamicin group compared to the control by day 5 and 10, confirming the nephrotoxicity effect. On the other hand, the same parameter levels of the NLC group were significantly different compared to the gentamicin group, confirming the protective effect on kidney function. Gentamicin also caused significant decreases in plasma levels of glutathione sulfhydryl (GSH) and superoxide dismutase (SOD) activity. However, gentamicin-α-tocopherol NLC significantly elevates both plasma levels of GSH as well as SOD activity. The present work indicates that, loading of gentamicin on NLC by using α-tocopherol, is an innovative strategy to protect against aminoglycoside-induced nephrotoxicity due to its antioxidant activity.

Read More

Antioxidant status following postprandial challenge of two different doses of tocopherols and tocotrienols

Fairus S, Cheng HM, Sundram K

J Integr Med. 2019 Nov 23. pii: S2095-4964(19)30113-X. doi: 10.1016/j.joim.2019.11.005.

Abstract

OBJECTIVE:

Tocotrienols (T3s) have been hypothesized to have greater antioxidant capacity than tocopherols (Ts) due to differences in biokinetics that affect their absorption and function. The present trial compares the antioxidant effectiveness following postprandial challenge of two different doses of α-T or palm T3-rich fraction (TRF) treatments and evaluates their dose-response effects on antioxidant status.

METHODS:

Ten healthy volunteers were given four different doses of vitamin E formulations (268 mg α-T, 537 mg α-T, 263 mg TRF or 526 mg TRF) in a cross-over postprandial trial. Blood was sampled at 0, 2, 4, 5, 6 and 8 hours after meal consumption and plasma antioxidant status including total glutathione, superoxide dismutase, malondialdehyde (MDA), ferric reducing antioxidant potential and trolox-equivalent antioxidant capacity, was analyzed.

RESULTS:

Supplementation with the different doses of either α-T or TRF did not significantly improve overall antioxidant status. There was no significant difference in overall antioxidant status among treatments at the different doses compared. However, a significant dose-response effect was observed for plasma MDA throughout the 8-hour postprandial period. MDA was significantly lower after the 537 mg α-T treatment, compared to the 268 mg α-T treatment; it was also lower after the 526 mg TRF treatment compared to the 263 mg TRF treatment (P < 0.05).

CONCLUSION:

T3 and α-T demonstrated similar antioxidant capacity, despite markedly lower levels of T3 in blood and lipoproteins, compared to α-T.

Read More

Plasma versus Erythrocyte Vitamin E in Renal Transplant Recipients, and Duality of Tocopherol Species

Sotomayor CG, Rodrigo R, Gomes-Neto AW, Gormaz JG, Pol RA, Minović I, Eggersdorfer ML, Vos M, Riphagen IJ, de Borst MH, Nolte IM, Berger SP, Navis GJ, Bakker SJL

Nutrients. 2019 Nov 19;11(11). pii: E2821. doi: 10.3390/nu11112821.

Abstract

Redox imbalance is an adverse on-going phenomenon in renal transplant recipients (RTR). Vitamin E has important antioxidant properties that counterbalance its deleterious effects. However, plasma vitamin E affinity with lipids challenges interpretation of its levels. To test the hypothesis that erythrocyte membranes represent a lipids-independent specimen to estimate vitamin E status, we performed a cross-sectional study in a cohort of adult RTR (n = 113) recruited in a university setting (2015-2018). We compared crude and total lipids-standardized linear regression-derived coefficients of plasma and erythrocyte tocopherol species in relation to clinical and laboratory parameters. Strongly positive associations of fasting lipids with plasma tocopherol became inverse, rather than absent, in total lipids-standardized analyses, indicating potential overadjustment. Whilst, no variables from the lipids domain were associated with the tocopherol species measured from erythrocyte specimens. In relation to inflammatory status and clinical parameters with antioxidant activity, we found associations in directions that are consistent with either beneficial or adverse effects concerning α- or γ-tocopherol, respectively. In conclusion, erythrocytes offer a lipids-independent alternative to estimate vitamin E status and investigate its relationship with parameters over other biological domains. In RTR, α- and γ-tocopherol may serve as biomarkers of relatively lower or higher vulnerability to oxidative stress and inflammation, noticeably in opposite directions.

Read More

Comparative study on the plasma lipid oxidation induced by peroxynitrite and peroxyl radicals and its inhibition by antioxidants

Morita M, Naito Y, Itoh Y, Niki E

Free Radic Res. 2019 Nov 14:1-13. doi: 10.1080/10715762.2019.1688799.

Abstract

The unregulated oxidative modification of biological molecules has been implicated in the pathogenesis of various diseases, and the beneficial effects of antioxidants against detrimental oxidation have received much attention. Among the multiple oxidants, peroxyl radical and peroxynitrite play an important role as chain-carrying species in lipid peroxidation and one of the major oxidants produced in vivo, respectively. This study was performed to elucidate the prominent features of these two oxidants by comparing their reactivity and selectivity and also the effects of antioxidants against plasma lipid oxidation induced by the two oxidants. It was shown that despite peroxyl radical and peroxynitrite gave similar pattern of lipid peroxidation products of plasma, and these two oxidants exert different selectivity and reactivity towards probes and antioxidants. The capacity of antioxidants to scavenge peroxynitrite and peroxyl radical decreased in the order BSA > glutathione > α-tocopherol ∼ bilirubin ∼ α – tocotrienol > γ-tocotrienol ∼ γ – tocopherol > uric acid and α-tocopherol ∼ α – tocotrienol > bilirubin > γ-tocotrienol ∼ γ – tocopherol > BSA > glutathione > uric acid, respectively. α-Tocopherol localised within plasma lipoproteins was six times less effective than trolox in aqueous phase for scavenging peroxynitrite and the derived oxidants, despite the same chemical reactivity of the two chromanols. BSA was relatively more effective as antioxidant against peroxynitrite than peroxyl radical, whereas TEMPO did not act as efficient antioxidant against both oxidants. It was suggested that thiols act as more potent antioxidant against peroxynitrite than phenolic antioxidants, while phenolic antioxidants are potent inhibitor of lipid peroxidation induced by free radicals including those derived from peroxynitrite. Abbreviations: AAPH: 2,2′-azobis(2-amidinopropane) dihydrochloride; C11-BODIPY: 4,4-difluoro-5-(4-phenyl-1,3-butadienyl)-4-bora-3a,4a-diaza-s-indacene-3-undecanoic acid; BSA: bovine serum albumin; DPPP: diphenyl-1-pyrenylphosphine; H(p)ODE: hydro(pero)xyoctadecadienoates; PGR: pyrogallol red; PUFA: polyunsaturated fatty acid; SIN-1: 3-morpholinosydnonimine; TEMPO: 2,2-6,6 tetramethylpiperidine-1-oxyl; Trolox: 2-carboxy-2,5,7,8-tetramethyl-6-hydroxychroman.

Read More

Investigation of the curative effects of palm vitamin E tocotrienols on autoimmune arthritis disease in vivo

Zainal Z, Rahim AA, Radhakrishnan AK, Chang SK, Khaza'ai H

Sci Rep. 2019 Nov 14;9(1):16793. doi: 10.1038/s41598-019-53424-7.

Abstract

The tocotrienol-rich fraction (TRF) from palm oil contains vitamin E, which possesses potent antioxidant and anti-inflammatory activities. Rheumatoid arthritis (RA) is a chronic joint inflammatory disease characterised by severe joint pain, cartilage destruction, and bone erosion owing to the effects of various pro-inflammatory mediators and cytokines. Here, we investigated the therapeutic effects of TRF in a rat model of collagen-induced arthritis (CIA). Arthritis was induced by a single intradermal injection of collagen type II in Dark Agouti (DA) rats. Rats were then treated with or without TRF by oral gavage from day 28 after the first collagen injection. Arthritic rats supplemented with TRF showed decreased articular index scores, ankle circumferences, paw volumes, and radiographic scores when compared with untreated rats. The untreated arthritic rats showed higher plasma C-reactive protein levels (p < 0.05) and production of pro-inflammatory cytokines than arthritic rats fed TRF. Moreover, there was a marked reduction in the severity of histopathological changes observed in arthritic rats treated with TRF compared with that in untreated arthritic rats. Overall, the results show that TRF had beneficial effects in this rat model of RA.

Read More

Effect of maternal omega-3 fatty acids and vitamin E supplementation on placental apoptotic markers in rat model of early and late onset preeclampsia

Kasture V, Kale A, Randhir K, Sundrani D, Joshi S

Life Sci. 2019 Nov 12;239:117038. doi: 10.1016/j.lfs.2019.117038

Abstract

AIM:

Disturbed placentation results in pregnancy complications like preeclampsia. Placental development is influenced by apoptosis during trophoblast differentiation and proliferation. Increased oxidative stress upregulates placental apoptosis. We have earlier reported increased oxidative stress, lower omega-3 fatty acids and vitamin E levels in women with preeclampsia. Current study examines effect of maternal omega-3 fatty acids and vitamin E supplementation on apoptotic markers across gestation in a rat model of preeclampsia.

MAIN METHODS:

Pregnant Wistar rats were randomly assigned to control; early onset preeclampsia (EOP); late onset preeclampsia (LOP); early onset preeclampsia + omega-3 fatty acid + vitamin E supplementation (EOP + O + E) and late onset preeclampsia + omega-3 fatty acid + vitamin E supplementation (LOP + O + E) groups. Animals (Control, EOP, EOP + O + E) were sacrificed at d14 and d20 of gestation while animals (LOP, LOP + O + E) were sacrificed at d20 to collect blood and placentae. Protein and mRNA levels of apoptotic markers were analyzed by ELISA and RT-PCR respectively.

KEY FINDINGS:

Protein levels of proapoptotic markers like Bcl-2 associated X-protein (BAX) (p < 0.05), caspase-8 and 3 (p < 0.01 for both) and malondialdehyde (p < 0.01) were higher only in the EOP group as compared to control. However, the antiapoptotic marker, B cell lymphoma 2 (Bcl-2) protein levels were lower in both the subtypes of preeclampsia (p < 0.01 for both).

SIGNIFICANCE:

Our findings suggest that supplementation was beneficial in reducing the caspase-8 and 3 in early onset preeclampsia but did not normalize BAX and Bcl-2 levels. This has implications for reducing placental apoptosis in preeclampsia.

Read More