Preparation of Vitamin E-Containing High-Density Lipoprotein and Its Protective Efficacy on Macrophages

Su M, Wang D, Chang W, Liu L, Cui M, Xu T

Assay Drug Dev Technol. 2018 Feb 22. doi: 10.1089/adt.2017.831. [Epub ahead of print]

Abstract

Atherosclerosis is a major cause for cardiovascular diseases. High-density lipoprotein (HDL) may reduce atherosclerosis through several different mechanisms. HDL is composed of lipids, cholesterol, cholesteryl esters, triglycerides, and phospholipids, mainly phosphatidylcholine plus specialized proteins called apolipoproteins (apos). In this study, we prepared vitamin E containing HDL (VE-HDL) that contains egg phosphatidylcholine, cholesterol, vitamin E, and two kinds of recombinant human apolipoproteins (rhapo)-rhapoA-I and rhapoE in vitro by the facilitation of cholate. After that, we studied the effects of VE-HDL on foam cell formation, cellular cholesterol efflux, oxidative low-density lipoprotein (oxLDL)-stimulated oxidative stress, and apoptosis of macrophages to evaluate the protective efficacy of VE-HDL on macrophages. As the results showed, we prepared a new type of reconstituent HDL with apolipoproteins and vitamin E for the first time. VE-HDL has protective efficacy on macrophages. It has the prospect of becoming a therapeutic agent on atherosclerosis in the future.

Read More

Protective effects of rosuvastatin and vitamin E against fipronil-mediated oxidative damage and apoptosis in rat liver and kidney.

Abdel-Daim MM, Abdeen A

Food Chem Toxicol. 2018 Feb 9;114:69-77. doi: 10.1016/j.fct.2018.01.055. [Epub ahead of print]

Abstract

Fipronil (FPN) is a phenylpyrazole insecticide that is extensively used in agriculture and veterinary applications. However, FPN is also a potent environmental toxicant to animals and humans. Therefore, the current study aimed to investigate the protective role of rosuvastatin (ROSU) and vitamin E (Vit E) against FPN-induced hepatorenal toxicity in albino rats. Seven groups with eight rats each were used for this purpose; these groups included the control vehicle group that received corn oil, the Vit E group (1000 mg/kg, orally), the ROSU group (10 mg/kg, orally), the FPN group (20 mg/kg, orally), the FPN-ROSU group, the FPN-Vit E group, and the FPN-Vit E-ROSU group. The results revealed that FPN significantly increased serum levels of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, lactate dehydrogenase, cholesterol, urea, and creatinine. In addition, there were substantial increases in the liver and kidney contents of malondialdehyde and nitric oxide, along with significant decreases in glutathione, superoxide dismutase, catalase, and glutathione peroxidase. FPN also caused histological changes and increased the expression of caspase-3 in the liver and kidney tissues. However, administration of ROSU and Vit E alone or in combination ameliorated the FPN-induced oxidative damage and apoptosis, possibly through their antioxidant properties.

Read More

Association of Alpha Tocopherol and Ag Sulfadiazine Chitosan Oleate Nanocarriers in Bioactive Dressings Supporting Platelet Lysate Application to Skin Wounds.

Bonferoni MC, Sandri G, Rossi S, Dellera E, Invernizzi A, Boselli C, Cornaglia AI, Del Fante C, Perotti C, Vigani B, Riva F, Caramella C, Ferrari F

Mar Drugs. 2018 Feb 9;16(2). pii: E56. doi: 10.3390/md16020056.

Abstract

Chitosan oleate was previously proposed to encapsulate in nanocarriers some poorly soluble molecules aimed to wound therapy, such as the anti-infective silver sulfadiazine, and the antioxidant α tocopherol. Because nanocarriers need a suitable formulation to be administered to wounds, in the present paper, these previously developed nanocarriers were loaded into freeze dried dressings based on chitosan glutamate. These were proposed as bioactive dressings aimed to support the application to wounds of platelet lysate, a hemoderivative rich in growth factors. The dressings were characterized for hydration capacity, morphological aspect, and rheological and mechanical behavior. Although chitosan oleate nanocarriers clearly decreased the mechanical properties of dressings, these remained compatible with handling and application to wounds. Preliminary studies in vitro on fibroblast cell cultures demonstrated good compatibility of platelet lysate with nanocarriers and bioactive dressings. An in vivo study on a murine wound model showed an accelerating wound healing effect for the bioactive dressing and its suitability as support of the platelet lysate application to wounds.

Read More

The antioxidant status of coenzyme Q10 and vitamin E in children with type 1 diabetes.

Alkholy UM, Abdalmonem N, Zaki A, Elkoumi MA, Hashim MIA, Basset MAA, Salah HE

J Pediatr (Rio J). 2018 Feb 7. pii: S0021-7557(17)30834-3. doi: 10.1016/j.jped.2017.12.005. [Epub ahead of print]

Abstract

OBJECTIVE:

The purpose of this study was to evaluate the antioxidant status of plasma vitamin E and plasma and intracellular coenzyme Q10 in children with type 1 diabetes.

METHOD:

This case-control study was conducted on 72 children with type 1 diabetes and compared to 48 healthy children, who were age, sex, and ethnicity-matched. The diabetic children were divided according to their glycosylated hemoglobin (A1c %) into two groups: poor and good glycemic control groups. All children underwent full history taking, clinical examination, and laboratory measurement of complete blood count, A1c %, plasma cholesterol, triglycerides, and vitamin E levels and coenzyme Q10 levels in plasma, erythrocytes, and platelets.

RESULTS:

Children with poor glycemic control showed significantly higher plasma vitamin E, coenzyme Q10, triglycerides, low-density lipoproteins, waist circumference/height ratio, cholesterol levels, and lower high-density lipoproteins and platelet coenzyme Q10 redox status in comparison to those with good glycemic control and the control group (p<0.05). Plasma coenzyme Q10 showed a positive correlation with the duration of type 1 diabetes, triglycerides, cholesterol, vitamin E, and A1c %, and negative correlation with the age of the diabetic group (p<0.05). The platelet redox status showed a negative correlation with the A1c % levels (r=-0.31; p=0.022) and the duration of type 1 diabetes (r=-0.35, p=0.012).

CONCLUSION:

Patients with type 1 diabetes, especially poorly controlled, had elevation of plasma vitamin E and coenzyme Q10 levels and decreased platelet redox status of coenzyme Q10, which may be an indicator of increased oxidative stress.

Read More

Tocotrienols Regulate Bone Loss through Suppression on Osteoclast Differentiation and Activity: A Systematic Review.

Radzi NFM, Ismail NAS, Alias E

Curr Drug Targets. 2018 Feb 6. doi: 10.2174/1389450119666180207092539. [Epub ahead of print]

Abstract

There are accumulating studies reporting vitamin E in general exhibits bone protective effects. This systematic review, however discusses the effects of a group of vitamin E isomers, tocotrienols in preventing bone loss through osteoclast differentiation and activity suppression. This review is aimed to discuss the literature reporting the effects of tocotrienols on osteoclasts, the cells specialized for resorbing bone. Literature search for relevant studies was conducted using SCOPUS and PUBMED MEDLINE. The inclusion criteria were original research articles published that reported the effect of any tocotrienol isomers or treatment with mixture containing tocotrienols on osteoclasts. Out of the total 22 studies from the literature search, only 11 of them were identified as relevant, which comprised of eight animal studies, two in vitro studies and only one combination of both. The in vivo studies indicated that tocotrienols improve the bone health and reduce bone loss via inhibition of osteoclast formation and resorption activity, which could be through regulation of RANKL and OPG expression as seen from their levels in the sera. This is well supported by data from the in vitro studies demonstrating the suppression of osteoclast formation and resorption activity following treatment with tocotrienol isomers. Thus, tocotrienols are suggested to be potential antioxidants for prevention and treatment of bone-related diseases characterized by increased bone loss.

Read More

α-Tocopherol promotes HaCaT keratinocyte wound repair through the regulation of polarity proteins leading to the polarized cell migration.

Horikoshi Y, Kamizaki K, Hanaki T, Morimoto M, Kitagawa Y, Nakaso K, Kusumoto C, Matsura T

Biofactors. 2018 Feb 5. doi: 10.1002/biof.1414. [Epub ahead of print]

Abstract

In many developed countries including Japan, how to care the bedridden elderly people with chronic wounds such as decubitus becomes one of the most concerned issues. Although antioxidant micronutrients including vitamin E, especially α-tocopherol (α-Toc), are reported to shorten a period of wound closure, the promoting effect of α-Toc on wound healing independent of its antioxidant activity remains to be fully elucidated. The aim of this study was to examine whether α-Toc affects wound-mediated HaCaT keratinocyte polarization process including the recruitment of polarity regulating proteins, leading to wound repair independently of its antioxidant activity. We investigated the effects of α-Toc and other antioxidants such as Trolox, a cell-permeable α-Toc analog on the migration, proliferation, and cell polarization of HaCaT keratinocytes after wounding. We analyzed the localization and complex formation of polarity proteins, partitioning defective 3 (Par3), and atypical protein kinase C (aPKC), and aPKC activity by immunohistochemistry, immunoprecipitation analyses, and in vitro kinase assays, respectively. α-Toc but not other antioxidants enhanced the wound closure and cell polarization in HaCaT keratinocytes after wounding. α-Toc regulated the localization and complex formation of Par3 and aPKC during wound healing. Knockdown of aPKC or Par3 abrogated α-Toc-mediated promotion of the wound closure and cell polarization in HaCaT keratinocytes. Furthermore, aPKC kinase activity was significantly increased in α-Toc-treated cells through activation of phosphatidylinositol 3-kinase/Akt signaling pathway. These results suggest that α-Toc promotes HaCaT keratinocyte wound repair by regulating the aPKC kinase activity and the formation of aPKC-Par3 complex.

Read More

Effect of in vitro vitamin E (alpha-tocopherol) supplementation in human spermatozoon submitted to oxidative stress.

Adami LNG, Belardin LB, Lima BT, Jeremias JT, Antoniassi MP, Okada FK, Bertolla RP

Andrologia. 2018 Feb 2. doi: 10.1111/and.12959. [Epub ahead of print]

Abstract

The aim of this study was to evaluate the antioxidant effect of in vitro supplementation with vitamin E in human spermatozoon incubated with an oxidative stress inducer. In this study, semen samples from 30 patients were collected and with one aliquot we performed semen analysis according to WHO. The remaining volume was divided into four aliquots: group C: incubated with BWW medium; group I: incubated with 5 mmol 1-1 hydrogen peroxide; group A: incubated with 40 μmol 1-1 vitamin E; and group AI: incubated with both them. After incubations, sperm functional analyses were performed and included: evaluation of oxidative stress, acrosome integrity, mitochondrial activity and DNA fragmentation. Groups were compared using a Friedman test with Bonferroni post hoc (α = 5%). In this study, we observed that in group I there was a decrease in acrosome integrity and mitochondrial activity, and an increase in DNA fragmentation, when compared to group C. Group AI showed an increase in acrosome integrity and mitochondrial activity when compared with group I. Based on our findings, we conclude that the vitamin E supplementation had a positive effect in protecting human spermatozoon from induced oxidative stress.

Read More

Potential roles of vitamin E in age-related changes in skeletal muscle health.

Chung E, Mo H, Wang S, Zu Y, Elfakhani M, Rios SR, Chyu MC, Yang RS, Shen CL

Nutr Res. 2018 Jan;49:23-36. doi: 10.1016/j.nutres.2017.09.005. Epub 2017 Sep 21.

Abstract

Skeletal muscle disorders including sarcopenia are prevalent during the complex biological process of aging. Loss of muscle mass and strength commonly seen in sarcopenia is induced by impaired neuromuscular innervation, transition of skeletal muscle fiber type, and reduced muscle regenerative capacity, all attributable to chronic inflammation, oxidative stress, and mitochondrial dysfunction. Current literature suggests that vitamin E molecules (α-, β-, γ-, δ-tocopherols and the corresponding tocotrienols) with their antioxidant and anti-inflammatory capabilities may mitigate age-associated skeletal dysfunction and enhance muscle regeneration, thus attenuating sarcopenia. Preclinical and human experimental studies show that vitamin E benefits myoblast proliferation, differentiation, survival, membrane repair, mitochondrial efficiency, muscle mass, muscle contractile properties, and exercise capacity. Limited number of human cross-sectional observational studies reveal positive associations between serum tocopherol level and muscle strength. Several factors, including difficulties in validating vitamin E intake and deficiency, variations in muscle-protective activity and metabolism of diverse forms of vitamin E, and lack of understanding of the mechanisms of action, preclude randomized clinical trials of vitamin E in people with sarcopenia. Future research should consider long-term clinical trials of with adequate sample size, advanced imaging technology and omics approaches to investigate underlying mechanisms and assess clinically meaningful parameters such as muscle strength, physical performance, and muscle mass in sarcopenia prevention and/or treatment.

Read More

Association of Circulating Vitamin E (α- and γ-Tocopherol) Levels with Gallstone Disease.

Waniek S, di Giuseppe R, Esatbeyoglu T, Ratjen I, Enderle J, Jacobs G, Nöthlings U, Koch M, Schlesinger S, Rimbach G, Lieb W

Nutrients. 2018 Jan 27;10(2). pii: E133. doi: 10.3390/nu100201

Abstract

In addition to well-established risk factors like older age, female gender, and adiposity, oxidative stress may play a role in the pathophysiology of gallstone disease. Since vitamin E exerts important anti-oxidative functions, we hypothesized that circulating vitamin E levels might be inversely associated with prevalence of gallstone disease. In a cross-sectional study, we measured plasma levels of α- and γ-tocopherolusing high performance liquid chromatography in a community-based sample (582 individuals; median age 62 years; 38.5% women). Gallstone disease status was assessed by ultrasound. Multivariable-adjusted logistic regression models were used to estimate the association of circulating α- and γ-tocopherol/cholesterol ratio levels with prevalent gallstone disease. Lower probabilities of having gallstone disease were observed in the top (compared to the bottom) tertile of the plasma α-tocopherol/cholesterol ratio in multivariable-adjusted models (OR (Odds Ratio): 0.31; 95% CI (Confidence Interval): 0.13-0.76). A lower probability of having gallstone disease was also observed for the γ-tocopherol/cholesterol ratio, though the association did not reach statistical significance (OR: 0.77; 95% CI: 0.35-1.69 for 3rd vs 1st tertile). In conclusion, our observations are consistent with the concept that higher vitamin E levels might protect from gallstone disease, a premise that needs to be further addressed in longitudinal studies.

Read More

Vitamin E as an Antioxidant in Female Reproductive Health.

Mohd Mutalip SS, Ab-Rahim S, Rajikin MH

Antioxidants (Basel). 2018 Jan 26;7(2). pii: E22. doi: 10.3390/antiox7020022.

Abstract

Vitamin E was first discovered in 1922 as a substance necessary for reproduction. Following this discovery, vitamin E was extensively studied, and it has become widely known as a powerful lipid-soluble antioxidant. There has been increasing interest in the role of vitamin E as an antioxidant, as it has been discovered to lower body cholesterol levels and act as an anticancer agent. Numerous studies have reported that vitamin E exhibits anti-proliferative, anti-survival, pro-apoptotic, and anti-angiogenic effects in cancer, as well as anti-inflammatory activities. There are various reports on the benefits of vitamin E on health in general. However, despite it being initially discovered as a vitamin necessary for reproduction, to date, studies relating to its effects in this area are lacking. Hence, this paper was written with the intention of providing a review of the known roles of vitamin E as an antioxidant in female reproductive health.

Read More