Vitamin E δ-tocotrienol triggers endoplasmic reticulum stress-mediated apoptosis in human melanoma cells.

Montagnani Marelli M, Marzagalli M, Moretti RM, Beretta G, Casati L, Comitato R, Gravina GL, Festuccia C, Limonta P.

Sci Rep. 2016 Jul 27;6:30502. doi: 10.1038/srep30502.

Abstract

Malignant melanoma is the leading cause of death from skin cancer. Drug toxicity and resistance represent a serious challange for melanoma treatments. Evidence demonstrates that natural compounds may play a crucial role in cancer prevention, growth and progression. Vitamin E tocotrienols (TT) were shown to possess antitumor activity. Here, we analyzed the effects of δ-TT on melanoma cell growth and the involvement of the endoplasmic reticulum (ER) stress in this activity. The experiments were performed on human melanoma cell lines, BLM and A375. δ-TT exerted a significant proapoptotic effect on both cell lines, involving the intrinsic apoptosis pathway; importantly, this compound did not affect the viability of normal human melanocytes. In melanoma cells, δ-TT exerted its antitumor effect through activation of the PERK/p-eIF2α/ATF4/CHOP, IRE1α and caspase-4 ER stress-related branches. Salubrinal, an inhibitor of the ER stress, counteracted the cytotoxic activity of δ-TT. In vivo experiments performed in nude mice bearing A375 xenografts evidenced that δ-TT reduces tumor volume and tumor mass; importantly, tumor progression was significantly delayed by δ-TT treatment. In conclusion, δ-TT exerts a proapoptotic activity on melanoma cells, through activation of the ER stress-related pathways. δ-TT might represent an effective option for novel chemopreventive/therapeutic strategies for melanoma.

Read More

Tocopherols in cancer: An update.

Das Gupta S, Suh N.

Mol Nutr Food Res. 2016 Jun;60(6):1354-63. doi: 10.1002/mnfr.201500847. Review.

Abstract

Tocopherols exist in four forms designated as α, β, δ, and γ. Due to their strong antioxidant properties, tocopherols have been suggested to reduce the risk of cancer. Cancer prevention studies with tocopherols have mostly utilized α-tocopherol. Large-scale clinical trials with α-tocopherol provided inconsistent results regarding the cancer-preventive activities of tocopherols. This review summarizes our current understanding of the anticancer activities of different forms of tocopherols based on follow-up of the clinical trials, recent epidemiological evidences, and experimental studies using in vitro and in vivo models. The experimental data provide strong evidence in support of the anticancer activities of δ-tocopherol, γ-tocopherol, and the natural tocopherol mixture rich in γ-tocopherol, γ-TmT, over α-tocopherol. Such outcomes emphasize the need for detailed investigation into the cancer-preventive activities of different forms of tocopherols to provide a strong rationale for intervention studies in the future.

Read More

Enhanced effectiveness of tocotrienol-based nano-emulsified system for topical delivery against skin carcinomas.

Pham J, Nayel A, Hoang C, Elbayoumi T.

Drug Deliv. 2016 Jun;23(5):1514-24. doi: 10.3109/10717544.2014.966925.

Abstract

The potent anti-proliferative and pro-apoptotic actions of tocotrienols (T3) against cancer, but not normal tissues, have been hampered by their limited systemic bioavailabilty. Recent expansive development of diverse nanoemulsion (NE) vehicles emphasized their vast potential to improve the effective dosing of different clinical and experimental drugs of lipophilic nature, such as T3. The emphasis of the present work is to develop a pharmaceutically scalable, low-energy nano-emulsification approach for optimized incorporation of T3-rich palm oil (Tocomin®), possessing anticancer activity as a potential cutaneous delivery platform for adjunctive therapy of skin carcinomas, either alone or in combination with other chemotherapeutic agents. Different Tocomin®-NEs, obtained with different homogenization strategies, were screened based on physicochemical uniformity (droplet size, charge and polydispersity) and subjected to stress physical stability testing, along with chemical content analysis (≥90% Tocomin® – incorporation efficiency). Adopted hybrid nano-emulsification of Tocomin®, correlated with highest preservation of DPPH-radical scavenging capacity of active T3 in prototype formulation, Tocomin®-NE, which effectively permeated diffusion cell membranes 4-folds higher than propyleneglycol (PG)-admixed Tocomin® control. Against two different cell models of human cutaneous carcinoma, Tocomin®-hybrid NE demonstrated significantly stronger cytotoxic profiles (p ≤ 0.01), visible in both concentration- and time- dependent manners, with at least 5-folds lower IC50 values, compared to those estimated for the closest Tocomin®-control. The proposed hybrid nano-emulsified formulation of Tocomin® provides simple and stable delivery platform, for effective topical application against keratinocyte tumors.

Read More

Vitamin E metabolite 13′-carboxychromanols inhibit pro-inflammatory enzymes, induce apoptosis and autophagy in human cancer cells by modulating sphingolipids and suppress colon tumor development in mice.

Jang Y, Park NY, Rostgaard-Hansen AL, Huang J, Jiang Q.

Free Radic Biol Med. 2016 Jun;95:190-9. doi: 10.1016/j.freeradbiomed.2016.03.018.

Abstract

Vitamin E forms are substantially metabolized to various carboxychromanols including 13′-carboxychromanols (13′-COOHs) that are found at high levels in feces. However, there is limited knowledge about functions of these metabolites. Here we studied δT-13′-COOH and δTE-13′-COOH, which are metabolites of δ-tocopherol and δ-tocotrienol, respectively. δTE-13′-COOH is also a natural constituent of a traditional medicine Garcinia Kola. Both 13′-COOHs are much stronger than tocopherols in inhibition of pro-inflammatory and cancer promoting cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX), and in induction of apoptosis and autophagy in colon cancer cells. The anticancer effects by 13′-COOHs appeared to be partially independent of inhibition of COX-2/5-LOX. Using liquid chromatography tandem mass spectrometry, we found that 13′-COOHs increased intracellular dihydrosphingosine and dihydroceramides after short-time incubation in HCT-116 cells, and enhanced ceramides while decreased sphingomyelins during prolonged treatment. Modulation of sphingolipids by 13′-COOHs was observed prior to or coinciding with biochemical manifestation of cell death. Pharmaceutically blocking the increase of these sphingolipids partially counteracted 13′-COOH-induced cell death. Further, 13′-COOH inhibited dihydroceramide desaturase without affecting the protein expression. In agreement with these mechanistic findings, δTE-13′-COOH significantly suppressed the growth and multiplicity of colon tumor in mice. Our study demonstrates that 13′-COOHs have anti-inflammatory and anticancer activities, may contribute to in vivo anticancer effect of vitamin E forms and are promising novel cancer prevention agents.

Read More

Synthesis of the vitamin E amino acid esters with an enhanced anticancer activity and in silico screening for new antineoplastic drugs.

Gagic Z, Ivkovic B, Srdic-Rajic T, Vucicevic J, Nikolic K, Agbaba D.

Eur J Pharm Sci. 2016 Jun 10;88:59-69. doi: 10.1016/j.ejps.2016.04.008.

Abstract

Tocopherols and tocotrienols belong to the family of vitamin E (VE) with the well-known antioxidant properties. For certain α-tocopherol and γ-tocotrienol derivatives used as the lead compounds in this study, antitumor activities against various cancer cell types have been reported. In the course of the last decade, structural analogs of VE (esters, ethers and amides) with an enhanced antiproliferative and proapoptotic activity against various cancer cells were synthesized. Within the framework of this study, seven amino acid esters of α-tocopherol (4a-d) and γ-tocotrienol (6a-c) were prepared using the EDC/DMAP reaction conditions and their ability to inhibit proliferation of the MCF-7 and MDA-MB-231 breast cancer cells and the A549 lung cancer cells was evaluated. Compound 6a showed an activity against all three cell lines (IC50: 20.6μM, 28.6μM and 19μM for the MCF-7, MDA-MB-231 and A549 cells, respectively), while compound 4a inhibited proliferation of the MCF-7 (IC50=8.6μM) and A549 cells (IC50=8.6μM). Ester 4d exerted strong antiproliferative activity against the estrogen-unresponsive, multi-drug resistant MDA-MB-231 breast cancer cell line, with IC50 value of 9.2μM. Compared with the strong activity of compounds 4a, 4d and 6a, commercial α-tocopheryl succinate and γ-tocotrienol showed only a limited activity against all three cell lines, with IC50 values >50μM. Investigation of the cell cycle phase distribution and the cell death induction confirmed an apoptosis of the MDA-MB-231 cells treated with 4d, as well as a synergistic effect of 4d with the known anticancer drug doxorubicin. This result suggests a possibility of a combined therapy of breast cancer in order to improve the therapeutic response and to lower the toxicity associated with a high dose of doxorubicin. The stability study of 4d in human plasma showed that ca. 83% initial concentration of this compound remains in plasma in the course of six hours incubation. The ligand based virtual screening of the ChEMBL database identified new compounds with a potential antiproliferative activity on MCF-7 and on multi-drug resistant MDA-MB 231 breast cancer cells.

Read More

Synergistic cytotoxic effects of combined δ-tocotrienol and jerantinine B on human brain and colon cancers.

Abubakar IB, Lim KH, Kam TS, Loh HS.

J Ethnopharmacol. 2016 May 26;184:107-18. doi: 10.1016/j.jep.2016.03.004.

Abstract

The genus Tabernaemontana has widespread distribution throughout tropical and subtropical parts of the world, i.e. Africa, Asia and America which has long been used for treatments of different disease conditions including tumours, wounds, syphilis, stomach ache and headache. Some Tabernaemontana species are used for treatment of piles, spleen and abdominal tumours in India. In particular, the leaf of Tabernaemontana corymbosa is used for treatment of tumours in Bangladesh. Parts of the plant or whole plants are used as decoctions, steam bath, powder and ointments. The present study was undertaken to study the mechanism of apoptosis induction in human glioblastoma (U87MG) and colorectal adenocarcinoma (HT-29) cancer cells by a novel indole alkaloid, jerantinine B isolated from T. corymbosa, δ-tocotrienoland the combined low-dose treatments of δ-tocotrienol with IC20 dose of jerantinine B. In summary, this study demonstrated the mechanism for cytotoxic potency of δ-tocotrienol and jerantinine B against U87MG and HT-29 cells. Furthermore, combined low-dose treatments induced concurrent synergistic inhibition of cancer cell growth with concomitant dose reduction thus minimizing toxicity to normal cells and improving potency of δ-tocotrienol and jerantinine B.

Read More

δ- and γ-tocopherols inhibit phIP/DSS-induced colon carcinogenesis by protection against early cellular and DNA damages.

Chen JX, Liu A, Lee MJ, Wang H, Yu S, Chi E, Reuhl K, Suh N, Yang CS.

Mol Carcinog. 2016 May 13. doi: 10.1002/mc.22481. [Epub ahead of print]

Abstract

Tocopherols, the major forms of vitamin E, are a family of fat-soluble compounds that exist in alpha (α-T), beta (β-T), gamma (γ-T), and delta (δ-T) variants. A cancer preventive effect of vitamin E is suggested by epidemiological studies. However, past animal studies and human intervention trials with α-T, the most active vitamin E form, have yielded disappointing results. A possible explanation is that the cancer preventive activity of α-T is weak compared to other tocopherol forms. In the present study, we investigated the effects of δ-T, γ-T, and α-T (0.2% in diet) in a novel colon cancer model induced by the meat-derived dietary carcinogen, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and promoted by dextran sodium sulfate (DSS)-induced colitis in CYP1A-humanized (hCYP1A) mice. PhIP/DSS treatments induced multiple polypoid tumors, mainly tubular adenocarcinomas, in the middle to distal colon of the hCYP1A mice after 10 wk. Dietary supplementation with δ-T and γ-T significantly reduced colon tumor formation and suppressed markers of oxidative and nitrosative stress (i.e., 8-oxo-dG and nitrotyrosine) as well as pro-inflammatory mediators (i.e., NF-κB p65 and p-STAT3) in tumors and adjacent tissues. By administering δ-T at different time periods, we obtained results suggesting that the inhibitory effect of δ-T against colon carcinogenesis is mainly due to protection against early cellular and DNA damages caused by PhIP. α-T was found to be ineffective in inhibiting colon tumors and less effective in attenuating the molecular changes. Altogether, we demonstrated strong cancer preventive effects of δ-T and γ-T in a physiologically relevant model of human colon cancer.

Read More

γ-Tocotrienol upregulates aryl hydrocarbon receptor expression and enhances the anticancer effect of baicalein.

Yamashita S, Baba K, Makio A, Kumazoe M, Huang Y, Lin IC, Bae J, Murata M, Yamada S, Tachibana H.

Biochem Biophys Res Commun. 2016 May 13;473(4):801-7. doi: 10.1016/j.bbrc.2016.03.111.

Abstract

Previous studies have identified biomolecules that mediate the physiological actions of food factors, such as amino acids, vitamins, fatty acids, minerals, plant polyphenols, and lactobacilli, suggesting that our bodies are equipped with an innate system that senses which food factors are required to maintain our health. However, the effects of environmental factors on food factor sensing (FFS) remains largely unknown. Tocotorienols (T3s), which belongs to the vitamin E family, possess several physiological functions, including cholesterol lowering and neuroprotective effects. Here, we investigated the effects of naturally abundant γ-T3 on FFS-related gene expressions in melanoma using a DNA chip. Our results showed that γ-T3 increased the expression level of aryl hydrocarbon receptor (AhR), a sensing molecule to plant polyphenol baicalein. The co-treatment with γ-T3 and baicalein enhanced the anti-proliferative activity of baicalein, accompanied by the downstream events of AhR-activation induced by baicalein. These data suggest that γ-T3 upregulates AhR expression and enhances its sensitivity to baicalein.]

Read More

The rise, the fall and the renaissance of vitamin E.

Azzi A, Meydani SN, Meydani M, Zingg JM.

Arch Biochem Biophys. 2016 Apr 1;595:100-8. doi: 10.1016/j.abb.2015.11.010. Review.

Abstract

This review deals with the expectations of vitamin E ability of preventing or curing, as a potent antioxidant, alleged oxidative stress based ailments including cardiovascular disease, cancer, neurodegenerative diseases, cataracts, macular degeneration and more. The results obtained with clinical intervention studies have highly restricted the range of effectiveness of this vitamin. At the same time, new non-antioxidant mechanisms have been proposed. The new functions of vitamin E have been shown to affect cell signal transduction and gene expression, both in vitro and in vivo. Phosphorylation of vitamin E, which takes place in vivo, results in a molecule provided with functions that are in part stronger and in part different from those of the non-phosphorylate compound. The in vivo documented functions of vitamin E preventing the vitamin E deficiency ataxia (AVED), slowing down the progression of non-alcoholic steato-hepatitis (NASH), decreasing inflammation and potentiating the immune response are apparently based on these new molecular mechanisms. It should be stressed however that vitamin E, when present at higher concentrations in the body, should exert antioxidant properties to the extent that its chromanol ring is unprotected or un-esterified.

Read More

Cytotoxicity Induced by a Redox-silent Analog of Tocotrienol in Human Mesothelioma H2452 Cell Line via Suppression of Cap-dependent Protein Translation.

Sato A, Ueno H, Takase A, Ando A, Sekine Y, Yano T.

Anticancer Res. 2016 Apr;36(4):1527-33.

Abstract

De novo synthesis of proteins is regulated by cap-dependent protein translation. Aberrant activation of the translation is a hallmark of many cancer types including malignant mesothelioma (MM). We previously reported that a redox-silent analog of α-tocotrienol, 6-O-carboxypropyl-α-tocotrienol (T3E) induces potent cytotoxicity against human MM cells. However, the detailed mechanism of cytotoxicity of T3E remains unclear. In this study, we investigated if T3E induced potent cytotoxicity aganist MM cells. T3E reduced the formation of the cap-dependent translation complex and induced inactivation of oncogene from rat sarcoma virus (RAS). These events were associated with T3E cytotoxicity in MM cells. Furthermore, atorvastatin, an inhibitor of RAS function, had similar effects on MM cells. Moreover, 4EGI-1, a specific inhibitor of the cap-dependent translation complex, induced severe cytotoxicity in MM cells. Overall, T3E had a cytotoxic effect on MM cells via disruption of the activated cap-dependent translation complex through inactivation of RAS.

Read More