Abstract
Cyclooxygenase (COX-1 and COX-2)- and 5-lipoxygenase (5-LOX)-catalyzed biosynthesis of eicosanoids play important roles in inflammation and chronic diseases. The vitamin E family has four tocopherols and tocotrienols. We have shown that the metabolites of δ-tocopherol (δT) and δ-tocotrienol (δTE), i.e., δT-13′-carboxychromanol (COOH) and δTE-13′-COOH, respectively, inhibit COX-1/-2 and 5-LOX activity, but the nature of how they inhibit 5-LOX is not clear. Further, the impact of tocopherols and tocotrienols on COX-1/-2 or 5-LOX activity has not been fully delineated. In this study, we found that tocopherols and tocotrienols inhibited human recombinant COX-1 with IC50s of 1-12 µM, and suppressed COX-1-mediated formation of thromboxane in collagen-stimulated rat’s platelets with IC50s of 8-50 µM. None of the vitamin E forms directly inhibited COX-2 activity. 13′-COOHs inhibited COX-1 and COX-2 enzyme activity with IC50s of 3-4 and 4-10 µM, respectively, blocked thromboxane formation in collagen- and ionophore-stimulated rats’ platelets with IC50s of 1.5-2.5 µM, and also inhibited COX-2-mediated prostaglandins in stimulated cells. Using enzyme kinetics, we observed that δT-13′-COOH, δTE-13′-COOH and δTE competitively inhibited 5-LOX activity with Ki of 1.6, 0.8 and 2.2 µM, respectively. These compounds decreased leukotriene B4 from stimulated neutrophil-like cells without affecting translocation of 5-LOX from cytosol to the nucleus. Our study reveals inhibitory effects of vitamin E forms and 13′-COOHs on COX-1 activity and thromboxane formation in platelets, and elucidates mechanisms underlying their inhibition of 5-LOX. These observations are useful for understanding the role of these compounds in disease prevention and therapy.