The content and composition of different vitamin E isoforms was analyzed in normal human skin. Interestingly the epidermis contained 1% alpha-tocotrienol, 3% gamma-tocotrienol, 87% alpha-tocopherol, and 9% gamma-tocopherol. Although the levels of tocotrienol in human epidermis appear to be considerably lower than reported in the hairless mouse, the presence of significant amounts of tocotrienol levels leads to speculation about the physiological function of tocotrienols in skin. Besides antioxidant activity and photoprotection, tocotrienols may have skin barrier and growth-modulating properties. A good correlation was found for epidermal alpha-tocopherol (r = 0.7909, p <.0003), gamma-tocopherol (r = 0.556, p <.025), and the total vitamin E content (r = 0.831, p <.0001) with the free radical 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging in epidermis, as assessed by electron paramagnetic resonance (EPR) spectroscopy. In human epidermis, alpha-tocopherol is quantitatively the most important vitamin E isoform present and comprises the bulk of first line free radical defense in the lipid compartment. Epidermal tocotrienol levels were not correlated with DPPH scavenging activity. The minimal erythema dose (MED), an individual measure for sun sensitivity and a crude indicator for skin cancer susceptibility, did not correlate with the epidermal content of the vitamin E isoforms. Hence it is concluded that vitamin E alone is not a determinant of individual photosensitivity in humans.