Tumor regression after systemic administration of tocotrienol entrapped in tumor-targeted vesicles

Fu JY, Blatchford DR, Tetley L, Dufès C.

The therapeutic potential of tocotrienol, an extract of vitamin E with anti-cancer properties, is hampered by its failure to specifically reach tumors after intravenous administration, without secondary effects on normal tissues. We hypothesize that the encapsulation of tocotrienol-rich fraction (TRF) within vesicles bearing transferrin, whose receptors are overexpressed on many cancer cells, could result in a selective delivery to tumors after intravenous administration. The objectives of this study are therefore to prepare and characterize transferrin-targeted vesicles encapsulating TRF, and to evaluate their therapeutic efficacy in vitro and in vivo. The entrapment of TRF in transferrin-bearing vesicles led to a 3-fold higher TRF uptake and more than 100-fold improved cytotoxicity in A431 (epidermoid carcinoma), T98G (glioblastoma) and A2780 (ovarian carcinoma) cell lines compared to TRF solution. The intravenous administration of TRF encapsulated in transferrin-bearing vesicles led to tumor regression and improvement of animal survival in a murine xenograft model, contrary to that observed with controls. The treatment was well tolerated by the animals. This work corresponds to the first preparation of a tumor-targeted delivery system able to encapsulate tocotrienol. Our findings show that TRF encapsulated in transferrin-bearing vesicles is a highly promising therapeutic system, leading to tumor regression after intravenous administration without visible toxicity.