Attenuating Effect of Vitamin E against Silver Nano Particles Toxicity in Submandibular Salivary Glands

Mahmoud M Bakr, Mahmoud M Al-Ankily, Sara M Shogaa, Mohamed Shamel

Bioengineering (Basel) . 2021 Dec 16;8(12):219. doi: 10.3390/bioengineering8120219.

Abstract

Silver nanoparticles (AgNPs) are extensively used in many industries due to their superior antimicrobial properties. However, it is evident from many studies that AgNPs has cytotoxic potential through its effect on excessive formation of reactive oxygen species (ROS). The aim of this study was to examine the toxic effect of AgNPs on the submandibular salivary glands and the attenuating effect of vitamin E, as a natural antioxidant, against this toxicity. Thirty Albino rats were divided into 3 groups (n = 10): control group, AgNPs group receiving 2 mg/kg daily for 28 days, and AgNPs and vitamin E group receiving AgNPs the same as the previous group in addition to vitamin E at a dose of 100 mg/kg. Microscopic, ultrastructural, and cytokeratin immune-reactivity examination of the glands were performed. The AgNPs group showed noticeable degeneration in all structures of the gland as evident in the histological and ultrastructural examination. The AgNPs and vitamin E group revealed an improvement of the glandular elements. A significant increase in cytokeratin immune expression was found after comparison of both groups (p = 0.01). This current study shows that vitamin E has powerful antioxidant properties, which can combat the cytotoxic effect caused by AgNPs. Further studies are deemed necessary to confirm this finding using other immunohistochemical markers, such as myosin and E-cadherin.

Read More

Tocopherols as antioxidants in lipid-based systems: The combination of chemical and physicochemical interactions determines their efficiency

Nathalie Barouh, Claire Bourlieu-Lacanal, Maria Cruz Figueroa-Espinoza, Erwann Durand, Pierre Villeneuve

Compr Rev Food Sci Food Saf . 2021 Dec 9. doi: 10.1111/1541-4337.12867. Online ahead of print.

Abstract

Lipid oxidation is a major concern in the food, cosmetic, and pharmaceutical sectors. The degradation of unsaturated lipids affects the nutritional, physicochemical, and organoleptic properties of products and can lead to off-flavors and to the formation of potentially harmful oxidation compounds. To prevent or slow down lipid oxidation, different antioxidant additives are used alone or in combination to achieve the best possible efficiency with the minimum possible quantities. In manufactured products, that is, heterogeneous systems containing lipids as emulsions or bulk phase, the efficiency of an antioxidant is determined not only by its chemical reactivity, but also by its physical properties and its interaction with other compounds present in the products. The antioxidants most widely used on the industrial scale are probably tocopherols, either as natural extracts or pure synthetic molecules. Considerable research has been conducted on their antioxidant activity, but results regarding their efficiency are contradictory. Here, we review the known mechanisms behind the antioxidant activity of tocopherols and discuss the chemical and physical features that determine their efficacy. We first describe their chemical reactivity linked with the main factors that modulate it between efficient antioxidant capacity and potential prooxidant effects. We then describe their chemical interactions with other molecules (phenolic compounds, metals, vitamin C, carotenes, proteins, and phospholipids) that have potential additive, synergistic, or antagonist effects. Finally, we discuss other physical parameters that influence their activity in complex systems including their specific interactions with surfactants in emulsions and their behavior in the presence of association colloids in bulk oils.

Read More

Protective Effect of Vitamin E on Cadmium-Induced Renal Oxidative Damage and Apoptosis in Rats

Jing Fang, Shenglan Xie, Zhuo Chen, Fengyuan Wang, Kejie Chen, Zhicai Zuo, Hengmin Cui, Hongrui Guo, Ping Ouyang, Zhengli Chen, Chao Huang, Wentao Liu, Yi Geng

Biol Trace Elem Res . 2021 Dec;199(12):4675-4687. doi: 10.1007/s12011-021-02606-4. Epub 2021 Feb 9.

Abstract

Cadmium (Cd), a widely distributed heavy metal, is extremely toxic to the kidney. Vitamin E (VE) is an important antioxidant in the body. It is known that VE exerts a protective effect on renal oxidative damage caused by Cd, but the effect and mechanism of VE on apoptosis are not fully understood. Thus, we conducted this study to explore the protective effect of VE on Cd-induced renal apoptosis and to elucidate its potential mechanism. Thirty-two 9-week-old male Sprague-Dawley rats were randomly divided into four groups, namely control, VE (100 mg/kg VE), Cd (5 mg/kg CdCl2), and VE + Cd (100 mg/kg VE + 5 mg/kg CdCl2), and received intragastric administration of Cd and/or VE for 4 weeks. The results showed that Cd exposure significantly reduced the weight of the body and kidney, elevated the accumulation of Cd in the kidney as well as the levels of BUN and Scr in serum, caused renal histological alterations, decreased the GSH and T-AOC contents and antioxidant enzyme (SOD, CAT, GSH-PX) activities, and increased renal MDA content. And the increased number of TUNEL-positive cells by Cd was accompanied by upregulated mRNA and protein expressions of apoptotic regulatory molecules (Bax, Caspase-3, GRP94, GRP78, Caspase-8) and downregulated Bcl-2 expressions. However, the combined treatment of Cd and VE could restore the above parameters to be close to those in the control rats. In conclusion, VE supplement could alleviate Cd-induced rat renal damage and oxidative stress through enhancing the antioxidant defense system and inhibiting apoptosis of renal cells.

Read More

Enhancing oxidative stability of tocopherol-enriched edible oils using short-term exposure to microwave irradiation

Hyuk Choi, HeeSun Na, SungHwa Kim, YoonHee Lee, JaeHwan Lee

J Food Sci . 2021 Dec;86(12):5272-5281. doi: 10.1111/1750-3841.15964. Epub 2021 Nov 18.

Abstract

The effect of microwave irradiation on the oxidative stability of tocopherol-enriched corn oil at temperatures of 60 or 100°C was evaluated using the Rancimat assay. Short durations of microwave treatment (1 min) on 10-g oil aliquots were found to increase the induction period of corn oil samples containing 500 and 1000 ppm tocopherol by 7.7% and 9.9%, respectively compared to control oils. The moisture content of tocopherol-enriched corn oil decreased by 15% compared to that of corn oil after 1 min of microwave treatment. At 100°C, 1000 ppm tocopherol-enriched corn oil received 3 min of microwave treatment had 5.8% and 9.9% lower primary and secondary oxidation products than control groups, respectively while this effect was not clearly observed for oils stored at 60°C. However, 15 min of microwave irradiation accelerated the rates of lipid oxidation in corn oils irrespective of the addition of tocopherol. Content of α- and γ-tocopherols in 1 min of microwave irradiated samples remained more by 28.8 and 5.8%, respectively than those of controls after 9 h heat treatment at 100°C. Overall, microwave irradiation within 3 min can increase the oxidative stability of 10 g-corn oils, especially at 100°C, which could be due to the reduced moisture content in the bulk oil matrix. Practical Application: A microwave oven is an irreplaceable home appliance and is widely used in households. Short time exposure to microwave irradiation can remove moisture efficiently from edible oils without the formation of oxidation products, which could increase the oxidative stability of these oils, especially under frying conditions. The results of this study can be utilized to ensure a longer shelf-life of fried products in the food industry by short time treatment of microwave irradiation.

Read More

Vitamin E and preterm infants

Tohru Ogihara, Makoto Mino

Free Radic Biol Med . 2021 Dec 3;S0891-5849(21)00845-5. doi: 10.1016/j.freeradbiomed.2021.11.037. Online ahead of print.

Abstract

In evaluating vitamin E (VE) nutritional status of preterm infants, it is essential that any data should be compared with those of healthy term infants, and never with those of adults. Moreover, it should be evaluated in terms of gestational age (GA), not birth weight (BW), because placental transfer of most nutrients from mother to fetus is dependent on GA, not BW. Judging from the limited data during the last 75 years, there was no significant correlation between GA and VE concentrations in circulation or in the red blood cells (RBCs), leukocytes, and buccal mucosal cells. In addition, the oxidizability of polyunsaturated fatty acids (PUFAs) in plasma or RBCs, as targets for protection by VE chain-breaking ability, was lower in preterm infants. However, because of the minimal information available about hepatic VE levels, which is considered a key determinant of whole body VE status, the decision on whether VE status of preterm infants is comparable with that of term infants should be postponed. Clinical trials of VE supplementation in preterm infants were repeatedly undertaken to investigate whether VE reduces severity or inhibits development of several diseases specific to preterm infants, namely retinopathy of prematurity (ROP), bronchopulmonary dysplasia (BPD), and germinal matrix hemorrhage – intraventricular hemorrhage (GMH-IVH). Most of these trials resulted in a misfire, with a few exceptions for IVH prevention. However, almost all these studies were performed from 1980s to early 1990s, in the pre-surfactant era, and the study populations were composed of mid-preterm infants with GAs of approximately 30 weeks (wks). There is considerable difference in ‘preterm infants’ between the pre- and post-surfactant eras; modern neonatal medicine mainly treats preterm infants of 28 wks GA or less. Therefore, these results are difficult to apply in modern neonatal care. Before considering new trials of VE supplementation, we should fully understand modern neonatal medicine, especially the recent method of oxygen supplementation. Additionally, a deeper understanding of recent progress in pathophysiology and therapies for possible target diseases is necessary to decide whether VE administration is still worth re-challenging in modern neonatal intensive care units (NICUs). In this review, we present recent concepts and therapeutic trends in ROP, BPD, and GMH-IVH for those unfamiliar with neonatal medicine. Numerous studies have reported the possible involvement of reactive oxygen species (ROS)-induced damage in relation to supplemental oxygen use, inflammation, and immature antioxidant defense in the development of both BPD and ROP. Various antioxidants effectively prevented the exacerbation of BPD and ROP in animal models. In the future, VE should be re-attempted as a complementary factor in combination with various therapies for BPD, ROP, and GMH-IVH. Because VE is a natural and safe supplement, we are certain that it will attract attention again in preterm medicine.

Read More

Antioxidant and cytotoxicity activities of δ-tocotrienol from the seeds of Allophylus africanus

Jean Francois Zeutsop, Joviale Nouboudem Zébazé, Raymond Ngansop Nono, Marcel Frese, Jean Rodolphe Chouna, Bruno Ndjakou Lenta, Pépin Nkeng-Efouet-Alango, Norbert Sewald

Nat Prod Res . 2021 Dec 2;1-11. doi: 10.1080/14786419.2021.2010195. Online ahead of print.

Abstract

Chemical investigation of Allophylus africanus P. Beauv fruits led to the isolation of a new δ-tocotrienol, 3α-hydroxy-δ-tocotrienol (1) together with eight known compounds (29). Compound (1) was allylated (1a) and prenylated (1 b and 1c) to give three new semi-synthesized derivatives which were fully characterized as: 6-O-allyl-3α-hydroxy-δ-tocotrienol (1a), 6-O-prenyl-3α-hydroxy-δ-tocotrienol (1 b) and 6-O,5-C-diprenyl-3α-hydroxy-δ-tocotrienol (1c). The structures of compounds were established using comprehensive spectroscopic analysis including UV, MS, 1 D NMR, 2 D NMR and by comparison with the corresponding literature data. Compound (1) and its semi-synthetic derivatives (1a-c) were tested for their antioxydant activity using DPPH radical scavenging assay and also for their cytotoxicity using human cervix carcinoma KB-3-1 cell lines. The results showed that compound (1) exhibited antioxidant activity with an IC50 value of 0.25 μM compared to the reference control trolox (26 µM); and good cytotoxic activity with IC50 values of 97 μM compared to the reference (+)-griseofulvin (IC50 between17-21 μM).

Read More

Vitamin E research: Past, now and future

Regina Brigelius-Flohé

Free Radic Biol Med . 2021 Dec;177:381-390. doi: 10.1016/j.freeradbiomed.2021.10.029. Epub 2021 Oct 29.

Abstract

The early history of vitamin E from its discovery by Herbert M. Evans and Katharine J. S. Bishop in 1922 up to its chemical synthesis by Paul Karrer and coworkers in 1938 and the development of the concept that vitamin E acts as an antioxidant in vivo are recalled. Some more recent results shedding doubt on this hypothesis are reviewed. They comprise influence of vitamin E on enzyme activities, signaling cascades, gene expression and bio-membrane structure. The overall conclusion is that our knowledge of the vitamin’s mechanism of action still remains fragmentary. The metabolism of tocopherols and tocotrienols is presented and discussed in respect to bioactivity of the metabolites, interference with drug metabolism and the future design of clinical trials. Some strategies are recommended how to reach the final goal: the identification of the primary vitamin E target(s) and the analysis of the downstream events up to the physiological phenomena.

Read More

Interventional study with vitamin E in cardiovascular disease and meta-analysis

Francesco Violi, Cristina Nocella, Lorenzo Loffredo, Roberto Carnevale, Pasquale Pignatelli

Free Radic Biol Med . 2021 Nov 25;S0891-5849(21)00825-X. doi: 10.1016/j.freeradbiomed.2021.11.027. Online ahead of print.

Abstract

Cardiovascular disease (CVD) is one of the major causes of morbidity and mortality and atherosclerosis is the common root to most of the CVD. Oxidative stress is one of the most important factors driving atherosclerosis and its complications. Thus, strategies for the prevention and treatment of cardiovascular events had oxidative changes as a potential target. Natural vitamin E consists of a family of eight different compounds, four tocopherols and four tocotrienols. All tocopherols and tocotrienols are potent antioxidants with lipoperoxyl radical-scavenging activities. In addition, α-tocopherol possesses also anti-inflammatory as well as anti-atherothrombotic effects by modulating platelet and clotting system. Experimental and in vitro studies described molecular and cellular signalling pathways regulated by vitamin E antithrombotic and antioxidant properties. While observational studies demonstrated an inverse association between vitamin E serum levels and CVD, interventional trials with vitamin supplements provided negative results. This review focus on the impact of vitamin E in the atherothrombotic process and describes the results of experimental and clinical studies with the caveats related to the interventional trials with vitamin E to prevent CVD.

Read More

A double-blind randomised controlled trial on the effect of Tocovid, a tocotrienol-rich capsule on postoperative atrial fibrillation at the National Heart Institute, Kuala Lumpur: an interim blinded analysis

Ahmad Farouk Musa, Jeswant Dillon, Mohamed Ezani Md Taib, Alwi Mohamed Yunus, Abdul Rais Sanusi, Mohd Nazeri Nordin, Julian A Smith

J Cardiothorac Surg . 2021 Nov 24;16(1):340. doi: 10.1186/s13019-021-01721-6.

Abstract

Introduction: Post-operative atrial fibrillation (POAF) is associated with poorer outcomes, increased resource utilisation, morbidity and mortality. Its pathogenesis is initiated by systemic inflammation and oxidative stress. It is hypothesised that a potent antioxidant and anti-inflammatory agent such as tocotrienol, an isomer of Vitamin E, could reduce or prevent POAF.

Aims: The aim of this study is to determine whether a potent antioxidative and anti-inflammatory agent, Tocovid, a tocotrienol-rich capsule, could reduce the incidence of POAF and affect the mortality and morbidity as well as the duration of ICU, HDU and hospital stay.

Methods: This study was planned as a prospective, randomised, controlled trial with parallel groups. The control group received placebo containing palm superolein while the treatment group received Tocovid capsules. We investigated the incidence of POAF, the length of hospital stay after surgery and the health-related quality of life.

Results: Recruitment commenced in January 2019 but the preliminary results were unblinded as the study is still ongoing. Two-hundred and two patients have been recruited out of a target sample size of 250 as of January 2021. About 75% have completed the study and 6.4% were either lost during follow-up or withdrew; 4% of participants died. The mean age group was 61.44 ± 7.30 years with no statistical difference between the groups, with males having a preponderance for AF. The incidence of POAF was 24.36% and the mean time for developing POAF was 55.38 ± 29.9 h post-CABG. Obesity was not a predictive factor. No statistically significant difference was observed when comparing left atrial size, NYHA class, ejection fraction and the premorbid history. The mean cross-clamp time was 71 ± 34 min and the mean bypass time was 95 ± 46 min, with no difference between groups. There was a threefold increase in death among patients with POAF (p = 0.008) and an increase in the duration of ICU stay (p = 0.01), the total duration of hospital stay (p = 0.04) and reintubation (p = 0.045).

Conclusion: A relatively low incidence rate of POAF was noted although the study is still ongoing. It remains to be seen if our prophylactic intervention using Tocovid would effectively reduce the incidence of POAF.

Read More

Critical Insight into Plausible Acquired Tocopherol Pathway in Neglected Human Trypanosomatids

Santanu Sasidharan, Timir Tripathi, Prakash Saudagar

ACS Omega . 2021 Nov 16;6(47):31396-31403. doi: 10.1021/acsomega.1c05046. eCollection 2021 Nov 30.

Abstract

Despite global therapeutic advancements, tropical parasitic infections like trypanosomiasis and leishmaniasis continue to be a major health concern in developing countries. These two tropical infectious diseases lead to enormous economic loss, significant disability, and morbidity, accounting for over one million deaths per year worldwide. The causative parasites, which shuttle between an insect vector and a mammalian host, thrive either in the bloodstream or in the intramacrophage environments. Essentially, the parasites live in an environment of oxidative stress and therefore require metabolic pathways to counterbalance the host immune response and survive the adverse conditions. Apart from the trypanothione pathway elucidated in the parasites, there exists a tocopherol pathway that functions to scavenge the reactive chemical species. This pathway, unique to photosynthetic organisms, is essential for the parasite’s survival, though the enzymes involved remain largely uncharacterized. Consequently, an understanding of the origin of the pathway and where and how the interconnected tocopherol pathway functions may result in the identification of promising and potential therapeutic interventions to combat these deadly diseases. Recent works underline the presence of the tocopherol pathway in trypanosomatids and hypothesize that trypanosomatids may be tocopherol prototrophs. This review focuses on the biosynthesis of tocopherols in Trypanosoma and Leishmania in light of the current evidence.

Read More