The neuroprotective effects of tocotrienol rich fraction and alpha tocopherol against glutamate injury in astrocytes.

Selvaraju TR, Khaza'ai H, Vidyadaran S, Abd Mutalib MS, Vasudevan R.

Bosn J Basic Med Sci. 2014 Nov 16;14(4):195-204.


Tocotrienol rich fraction (TRF) is an extract of palm oil, which consists of 25% alpha tocopherol (α-TCP) and 75% tocotrienols. TRF has been shown to possess potent antioxidant, anti-inflammatory, anticancer, neuroprotection, and cholesterol lowering activities. Glutamate is the main excitatory amino acid neurotransmitter in the central nervous system of mammalian, which can be excitotoxic, and it has been suggested to play a key role in neurodegenerative disorders like Parkinson’s and Alzheimer’s diseases. In this present study, the effects of vitamin E (TRF and α-TCP) in protecting astrocytes against glutamate injury were elucidated. Astrocytes induced with 180 mM of glutamate lead to significant cell death. However, glutamate mediated cytotoxicity was diminished via pre and post supplementation of TRF and α-TCP. Hence, vitamin E acted as a potent antioxidant agent in recovering mitochondrial injury due to elevated oxidative stress, and enhanced better survivability upon glutamate toxicity.

Read More


Acute Toxicity of Subcutaneously Administered Vitamin E Isomers Delta- and Gamma-Tocotrienol in Mice.

Swift SN, Pessu RL, Chakraborty K, Villa V, Lombardini E, Ghosh SP

Int J Toxicol. 2014 Oct 28.


The toxicity of parenterally administered vitamin E isomers, delta-tocotrienol (DT3) and gamma-tocotrienol (GT3), was evaluated in male and female CD2F1 mice. In an acute toxicity study, a single dose of DT3 or GT3 was administered subcutaneously in a dose range of 200 to 800 mg/kg. A mild to moderately severe dermatitis was observed clinically and microscopically in animals at the injection site at doses above 200 mg/kg. The severity of the reaction was reduced when the drug concentration was lowered. Neither drug produced detectable toxic effects in any other tissue at the doses tested. Based on histopathological analysis for both DT3 and GT3, and macroscopic observations of inflammation at the injection site, a dose of 300 mg/kg was selected as the lowest toxic dose in a 30-day toxicity study performed in male mice. At this dose, a mild skin irritation occurred at the injection site that recovered completely by the end of the experimental period. At a dose of 300 mg/kg of DT3 or GT3, no adverse effects were observed in any tissues or organs.

Read More

Location of α-tocopherol and α-tocotrienol to heterogeneous cell membranes and inhibition of production of peroxidized cholesterol in mouse fibroblasts.

Nakamura T, Noma A, Terao J

Springerplus. 2014 Sep 23;3:550.



α-Tocopherol (α-T) and α-tocotrienol (α-T3) are well recognized as lipophilic antioxidants. Nevertheless, there is limited knowledge on their location in heterogeneous cell membranes. We first investigated the distribution of α-T and α-T3 to the cholesterol-rich microdomains (lipid rafts and caveolae) of heterogeneous cell membranes by incubating these antioxidants with cultured mouse fibroblasts.


Levels of cellular uptake for α-T and α-T3 were adjusted to the same order, as that of the latter was much more efficient than that of the former in the cultured cells. After ultracentrifugation, α-T and α-T3 were partitioned to the microdomain fractions. When the distribution of α-T and α-T3 was further confirmed by using methyl-β-cyclodextrin (which removes cholesterol from membranes), α-T was suggested to be distributed to the microdomains (approx. 9% of the total uptake). The same treatment did not affect α-T3 content in the microdomain fractions, indicating that α-T3 is not located in these cholesterol-rich domains. However, α-T and α-T3 significantly inhibited the production of peroxidized cholesterol when cells were exposed to ultraviolet-A light.


These results suggest that α-T and α-T3 can act as membranous antioxidants against photo-irradiated cholesterol peroxidation irrespective of their distribution to cholesterol-rich microdomains.

Read More

Delta-tocotrienol induces apoptotic cell death via depletion of intracellular squalene in ED40515 cells.

Yamasaki M, Nishimura M, Sakakibara Y, Suiko M, Morishita K, Nishiyama K

Food Funct. 2014 Oct 22;5 (11):2842-9


Here, we examined the effect of tocotrienols (T3) on the growth of adult T-cell leukemia (ATL) cells. All three forms (β-, γ-, and δ-T3) inhibited cell proliferation in a dose-dependent manner; δ-T3 showed the strongest growth-inhibitory effect. δ-T3 increased the G1, G2/M, and subG1 populations and induced internucleosomal DNA fragmentation. δ-T3 treatment also increased the levels of cleaved caspase-3, -6, -7, -9, and poly-ADP ribose polymerase (PARP), and this was accompanied by downregulation of Bcl-2, Bcl-xL, and XIAP. Moreover, δ-T3 decreased nuclear p65 NF-κB levels, indicating downregulation of NF-κB activity. This cytotoxic effect of δ-T3 was abrogated by squalene (SQL) but not mevalonate (MVL), farnesyl diphosphate (FPP), geranylgeranyl diphosphate (GGPP), or cholesterol (CL). δ-T3 decreased intracellular SQL levels, and inhibition of de novo cholesterol synthesis did not affect the action of SQL. Furthermore, δ-T3 significantly decreased farnesyl-diphosphate farnesyltransferase 1 (FDFT1) expression. Taken together, it is evident that δ-T3, due to its ability to potently induce apoptosis via the depletion of intracellular SQL, shows the potential to be considered a therapeutic agent in patients with ATL.

Therapeutic Efficacy of Vitamin E δ-Tocotrienol in Collagen-Induced Rat Model of Arthritis.

Haleagrahara N, Swaminathan M, Chakravarthi S, Radhakrishnan A.

Rheumatoid arthritis (RA) is a chronic, systemic, inflammatory disease primarily involving inflammation of the joints. Although the management of the disease has advanced significantly in the past three decades, there is still no cure for RA. The aim of this study was to determine the therapeutic efficacy of δ-tocotrienol, in the rat model of collagen-induced arthritis (CIA). Arthritis was induced by intradermal injection of collagen type II emulsified in complete Freund’s adjuvant. CIA rats were orally treated with δ-tocotrienol (10 mg/kg) or glucosamine hydrochloride (300 mg/kg) from day 25 to 50. Efficacy was assessed based on the ability to reduce paw edema, histopathological changes, suppression of collagen-specific T-cells, and a reduction in C-reactive protein (CRP) levels. It was established that δ-tocotrienol had the most significant impact in lowering paw edema when compared to glucosamine treatment. Paw edema changes correlated well with histopathological analysis where there was a significant reversal of changes in groups treated with δ-tocotrienol. The results suggest that δ-tocotrienol is efficient in amelioration of collagen-induced arthritis. Vitamin E delta-tocotrienol may be of therapeutic value against rheumatoid arthritis.

Read more

Effect of γ-tocotrienol in counteracting oxidative stress and joint damage in collagen-induced arthritis in rats.

Radhakrishnan A, Tudawe D, Chakravarthi S, Chiew GS, Haleagrahara N.

Tocotrienols exhibit a significant anti-inflammatory and antioxidant effect in numerous human diseases. However, the anti-inflammatory and antioxidant effects of tocotrienols in arthritic conditions are not well documented. Therefore, the effect of γ-tocotrienol supplementation against oxidative stress and joint pathology in collagen-induced arthritis in rats was investigated in the present study. Adult female Dark Agouti rats were randomly divided into groups: Control, γ-tocotrienol alone, arthritis alone and arthritis with γ-tocotrienol. Arthritis was induced using 4 mg/kg body weight collagen in complete Freund’s adjuvant. The rats were treated orally with 5 mg/kg body weight of γ-tocotrienol between day 21 and day 45. After 45 days, serum C-reactive protein (CRP), tumor necrosis factor (TNF)-α, superoxide dismutase (SOD) and total glutathione (GSH) assays were conducted. γ-tocotrienol significantly reduced the arthritis-induced changes in body weight, CRP, TNF-α, SOD and the total GSH levels. There was a significant reduction in the arthritis-induced histopathological changes in the γ-tocotrienol treatment group. The data indicated that administration of γ-tocotrienol resulted in a significant antioxidant and anti-inflammatory effect on collagen-induced arthritis; therefore, γ-tocotrienol may have therapeutic potential as a long-term anti-arthritic agent in rheumatoid arthritis therapy.

Read more

Natural forms of vitamin E: Metabolism, antioxidant and anti-inflammatory activities and the role in disease prevention and therapy.

Jiang Q.

The Vitamin E family consists of four tocopherols and four tocotrienols. α-Tocopherol (αT) is the predominant form of vitamin E in tissues and its deficiency leads to ataxia in humans. However, results from many clinical studies do not support protective roles of αT in disease prevention in people with adequate nutrient status. On the other hand, recent mechanistic studies indicate that other forms of vitamin E such as γ-tocopherol (γT), δ-tocopherol (δT) and γ-tocotrienol (γTE) have unique antioxidant and anti-inflammatory properties that are superior to αT in prevention and therapy against chronic diseases. These vitamin E forms scavenge reactive nitrogen species, inhibit cyclooxygenase- and 5-lipoxygenase-catalyzed eicosanoids and suppress pro-inflammatory signaling such as NF-κB and STAT3/6. Unlike αT, other vitamin E forms are significantly metabolized to carboxychromanols via cytochrome P-450 (CYP4F2)-initiated side-chain ω-oxidation. Long-chain carboxychromanols, esp.13′-carboxychromanols, are shown to have stronger anti-inflammatory effects than un-metabolized vitamins and may therefore contribute to beneficial effects of vitamin E forms in vivo. Consistent with mechanistic findings, animal and human studies show that γT and tocotrienols may be useful against inflammation-associated diseases. This review focuses on non-αT forms of vitamin E with respect to their metabolism, anti-inflammatory effects and mechanisms and in vivo efficacy in preclinical models as well as human clinical intervention studies.

Read more

Attenuation of lipopolysaccharide (LPS)-induced cytotoxicity by tocopherols and tocotrienols.

Nishio K, Horie M, Akazawa Y, Shichiri M, Iwahashi H, Hagihara Y, Yoshida Y, Niki E.

Redox Biol. 2013 Jan 30;1(1):97-103. doi: 10.1016/j.redox.2012.10.002.


Lipopolysaccharide (LPS) induces host inflammatory responses and tissue injury and has been implicated in the pathogenesis of various age-related diseases such as acute respiratory distress syndrome, vascular diseases, and periodontal disease. Antioxidants, particularly vitamin E, have been shown to suppress oxidative stress induced by LPS, but the previous studies with different vitamin E isoforms gave inconsistent results. In the present study, the protective effects of α- and γ-tocopherols and α- and γ-tocotrienols on the oxidative stress induced by LPS against human lung carcinoma A549 cells were studied. They suppressed intracellular reactive oxygen formation, lipid peroxidation, induction of inflammatory mediator cytokines, and cell death. Tocopherols were incorporated into cultured cells much slower than tocotrienols but could suppress LPS-induced oxidative stress at much lower intracellular concentration than tocotrienols. Considering the bioavailability, it was concluded that α-tocopherol may exhibit the highest protective capacity among the vitamin E isoforms against LPS-induced oxidative stress.

Read More

Neuroprotective Effects of α-Tocotrienol on Kainic Acid-Induced Neurotoxicity in Organotypic Hippocampal Slice Cultures

Jung NY, Lee KH, Won R, Lee BH

Int. J. Mol. Sci. 2013, 14(9), 18256-18268; doi:10.3390/ijms140918256


Vitamin E, such as alpha-tocopherol (ATPH) and alpha-tocotrienol (ATTN), is a chain-breaking antioxidant that prevents the chain propagation step during lipid peroxidation. In the present study, we investigated the effects of ATTN on KA-induced neuronal death using organotypic hippocampal slice culture (OHSC) and compared the neuroprotective effects of ATTN and ATPH. After 15 h KA (5 µM) treatment, delayed neuronal death was detected in the CA3 region and reactive oxygen species (ROS) formation and lipid peroxidation were also increased. Both co-treatment and post-treatment of ATPH (100 µM) or ATTN (100 µM) significantly increased the cell survival and reduced the number of TUNEL-positive cells in the CA3 region. Increased dichlorofluorescein (DCF) fluorescence and levels of thiobarbiturate reactive substances (TBARS) were decreased by ATPH and ATTN treatment. These data suggest that ATPH and ATTN treatment have protective effects on KA-induced cell death in OHSC. ATTN treatment tended to be more effective than ATPH treatment, even though there was no significant difference between ATPH and ATTN in co-treatment or post-treatment.

Read More

Tocotrienols enhance melanosome degradation through endosome docking/fusion proteins in B16F10 melanoma cells.

Choi B, Heo JH, Kwon HJ, Lee ES, Sohn S.

Food Funct. 2013 Sep 2. [Epub ahead of print]


Vitamin E inhibits tyrosinase activity and acts as a melanogenesis inhibitor in epidermal melanocytes in vitro. However, there is no direct evidence indicating that melanosomes are degraded in lysosomes in the presence of vitamin E. To determine whether vitamin E-induced melanosome disintegration is related to the expression of endosome docking/fusion proteins in B16F10 melanoma cells, electron microscopy, reverse transcription-polymerase chain reaction (RT-PCR), and real-time PCR were used to observe the effects of tocomin (α-tocopherols and α,γ,δ-tocotrienols in palm oil) on B16F10 melanoma cells. Melanosomal integrity was lost in lysosomes of B16F10 melanoma cells when treated with tocomin, indicating that tocomin caused the degradation of melanosomes in the lysosomal compartment. RT-PCR and real-time PCR analysis demonstrated mRNA expression of tyrosinase and the endosome docking/fusion proteins (syntaxin7, Rab7, Vps11, Vps16, Vps33, Vps39, and Vps41). Expression of syntaxin7, Vps16, Vps33, and Vps41 mRNA increased significantly in cells treated with tocomin compared with that in controls. These results indicate that the tocomin-induced degradation of melanosomes in the lysosomal compartment occurs with an increase in endosome docking/fusion proteins (syntaxin7, Vps16, Vps33, and Vps41) in cultured B16F10 melanoma cells.

Read More