Tocotrienols suppress proinflammatory markers and cyclooxygenase-2 expression in RAW264.7 macrophages

Yam ML, Abdul Hafid SR, Cheng HM, Nesaretnam K.

Lipids. 2009 Sep;44(9):787-97. Epub 2009 Aug 5.

Tocotrienols are powerful chain breaking antioxidant. Moreover, they are now known to exhibit various non-antioxidant properties such as anti-cancer, neuroprotective and hypocholesterolemic functions. This study was undertaken to investigate the anti-inflammatory effects of tocotrienol-rich fraction (TRF) and individual tocotrienol isoforms namely delta-, gamma-, and alpha-tocotrienol on lipopolysaccharide-stimulated RAW264.7 macrophages. The widely studied vitamin E form, alpha-tocopherol, was used as comparison. Stimulation of RAW264.7 with lipopolysaccharide induced the release of various inflammatory markers. 10 mcirog/ml of TRF and all tocotrienol isoforms significantly inhibited the production of interleukin-6 and nitric oxide. However, only alpha-tocotrienol demonstrated a significant effect in lowering tumor necrosis factor-alpha production. Besides, TRF and all tocotrienol isoforms except gamma-tocotrienol reduced prostaglandin E(2) release. It was accompanied by the down-regulation of cyclooxygenase-2 gene expression by all vitamin E forms except alpha-tocopherol. Collectively, the data suggested that tocotrienols are better anti-inflammatory agents than alpha-tocopherol and the most effective form is delta-tocotrienol.

Suppression of NF-kappa beta signaling pathway by tocotrienol can prevent diabetes associated cognitive deficits

Kuhad A, Bishnoi M, Tiwari V, Chopra K.

Pharmacol Biochem Behav. 2009 Apr;92(2):251-9. Epub 2008 Dec 24.

Abstract

Objective: The etiology of diabetes associated cognitive decline is multifactorial and involves insulin receptor down regulation, neuronal apoptosis and glutamatergic neurotransmission. The study was designed to evaluate the impact of tocotrienol on cognitive function and neuroinflammatory cascade in streptozotocin-induced diabetes.

Research design and method: Streptozotocin-induced diabetic rats were treated with tocotrienol for 10 weeks. Morris water maze was used for behavioral assessment of memory. Cytoplasmic and nuclear fractions of cerebral cortex and hippocampus were prepared for the quantification of acetylcholinesterase activity, oxidative-nitrosative stress, tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta), NFkappabeta and caspase-3.

Results: After 10 weeks of streptozotocin injection, the rats produced significant increase in transfer latency which was coupled with enhanced acetylcholinesterase activity, increased oxidative-nitrosative stress, TNF-alpha, IL-1beta, caspase-3 activity and active p65 subunit of NFkappabeta in different regions of diabetic rat brain. Interestingly, co-administration of tocotrienol significantly and dose-dependently prevented behavioral, biochemical and molecular changes associated with diabetes. Moreover, diabetic rats treated with insulin-tocotrienol combination produced more pronounced effect on molecular parameters as compared to their per se groups.

Conclusions: Collectively, the data reveal that activation of NFkappabeta signaling pathway is associated with diabetes induced cognitive impairment and point towards the therapeutic potential of tocotrienol in diabetic encephalopathy.

Read More

Long-chain carboxychromanols, metabolites of vitamin E, are potent inhibitors of cyclooxygenases

Jiang Q, Yin X, Lill MA, Danielson ML, Freiser H, Huang J.

Proc Natl Acad Sci U S A. 2008 Dec 23;105(51):20464-9. Epub 2008 Dec 11.

Cyclooxygenase (COX-1/COX-2)-catalyzed eicosanoid formation plays a key role in inflammation-associated diseases. Natural forms of vitamin E are recently shown to be metabolized to long-chain carboxychromanols and their sulfated counterparts. Here we find that vitamin E forms differentially inhibit COX-2-catalyzed prostaglandin E(2) in IL-1beta-stimulated A549 cells without affecting COX-2 expression, showing the relative potency of gamma-tocotrienol approximately delta-tocopherol > gamma-tocopherol >> alpha- or beta-tocopherol. The cellular inhibition is partially diminished by sesamin, which blocks the metabolism of vitamin E, suggesting that their metabolites may be inhibitory. Consistently, conditioned media enriched with long-chain carboxychromanols, but not their sulfated counterparts or vitamin E, reduce COX-2 activity in COX-preinduced cells with 5 microM arachidonic acid as substrate. Under this condition, 9′- or 13′-carboxychromanol, the vitamin E metabolites that contain a chromanol linked with a 9- or 13-carbon-length carboxylated side chain, inhibits COX-2 with an IC(50) of 6 or 4 microM, respectively. But 13′-carboxychromanol inhibits purified COX-1 and COX-2 much more potently than shorter side-chain analogs or vitamin E forms by competitively inhibiting their cyclooxygenase activity with K(i) of 3.9 and 10.7 microM, respectively, without affecting the peroxidase activity. Computer simulation consistently indicates that 13′-carboxychromanol binds more strongly than 9′-carboxychromanol to the substrate-binding site of COX-1. Therefore, long-chain carboxychromanols, including 13′-carboxychromanol, are novel cyclooxygenase inhibitors, may serve as anti-inflammation and anticancer agents, and may contribute to the beneficial effects of certain forms of vitamin E.

Tocotrienol-rich fraction of palm oil exhibits anti-inflammatory property by suppressing the expression of inflammatory mediators in human monocytic cells

Wu SJ, Liu PL, Ng LT.

Mol Nutr Food Res. 2008 Aug;52(8):921-9.

Tocotrienol-rich fraction (TRF) of palm oil has been shown to possess potent antioxidant, anticancer, and cholesterol lowering activities. In this study, our aim was to examine the effects of TRF on LPS-induced inflammatory response through measuring the production of inflammatory mediators, namely nitric oxide (NO), prostaglandin E(2) (PGE(2)), inducible nitric oxide synthase (iNOS), cytokines (TNF-alpha, IL-4, and IL-8), cyclooxygenase-1 and -2 (COX-1 and COX-2), and nuclear factor-kappaB (NF-kappaB) in human monocytic (THP-1) cells. At concentrations 0.5-5.0 microg/mL, TRF dose-dependently protected against LPS-induced cell death. At same concentrations, TRF also showed potent anti-inflammatory activity as demonstrated by a dose-dependent inhibition of LPS (1 microg/mL)-induced release of NO and PGE(2), and a significant decrease in the transcription of proinflammatory cytokines. TRF at 1.0 microg/mL significantly blocked the LPS induction of iNOS and COX-2 expression, but not COX-1. This anti-inflammatory activity was further supported by the inhibition of NF-kappaB expression. These results conclude that TRF possesses potent anti-inflammatory activity, and its mechanism of action could be through the inhibition of iNOS and COX-2 production, as well as NF-kappaB expression.

Vitamin E and mast cells

Zingg JM.

Vitam Horm. 2007;76:393-418.

Mast cells play an important role in the immune system by interacting with B and T cells and by releasing several mediators involved in activating other cells. Hyperreactivity of mast cells and their uncontrolled accumulation in tissues lead to increased release of inflammatory mediators contributing to the pathogenesis of several diseases such as rheumatoid arthritis, atherosclerosis, multiple sclerosis, and allergic disorders such as asthma and allergic rhinitis. Interference with mast cell proliferation, survival, degranulation, and migration by synthetic or natural compounds may represent a preventive strategy for the management of these diseases. Natural vitamin E covers a group of eight analogues-the alpha-, beta-, gamma-, and delta-tocopherols and the alpha-, beta-, gamma-, and delta-tocotrienols, but only alpha-tocopherol is efficiently retained by the liver and distributed to peripheral tissues. Mast cells preferentially locate in the proximity of tissues that interface with the external environment (the epithelial surface of the skin, the gastrointestinal mucosa, and the respiratory system), what may render them accessible to treatments with inefficiently retained natural vitamin E analogues and synthetic derivatives. In addition to scavenging free radicals, the natural vitamin E analogues differently modulate signal transduction and gene expression in several cell lines; in mast cells, protein kinase C, protein phosphatase 2A, and protein kinase B are affected by vitamin E, leading to the modulation of proliferation, apoptosis, secretion, and migration. In this chapter, the possibility that vitamin E can prevent diseases with mast cells involvement by modulating signal transduction and gene expression is evaluated.

Vitamin E: Inflammation And Atherosclerosis

U. Singh and S. Devaraj

Vitam Horm. 2007;76:519-49

Cardiovascular disease (CVD) is the leading cause of morbidity and mortality in the western world with its incidence increasing lately in developing countries. Several lines of evidence support a role for inflammation in atherogenesis. Hence, dietary micronutrients having anti-inflammatory properties may have a potential beneficial effect with regard to CVD. Vitamin E is a potent antioxidant with anti-inflammatory properties. It comprises eight diferent isoforms: four tocopherols (T) (α, β, γ, and δ) and four tocotrienols (T3) (α, β, γ, and δ). A wealth of data is available for the preventive efficacy of  alpha-T. alpha-T supplementation in human subjects and animal models has been shown to be antioxidant and antiinflammatory in terms of decreasing C-reactive protein (CRP) and release of proinflammatory cytokines, the chemokine IL-8 and PAI-1 levels especially at high doses. Gamma-T is effective in decreasing reactive nitrogen species and also appears to have antiinflammatory properties; however, there are scanty data examining pure gamma-T preparations. Furthermore, tocotrienols (α and γ) also have implications for prevention of CVD; however, there are conflicting and insuffcient data in the literature with regards to their potency. In this chapter, we have gathered recent emerging data on alpha T specifically and also have given a composite view of gamma-T and tocotrienols especially with regards to their effect on inflammation as it relates to CVD.

Effects of new combinative antioxidant FeAOX-6 and alpha-tocotrienol on macrophage atherogenesis-related functions

Napolitano M, Avanzi L, Manfredini S, Bravo E.

Vascul Pharmacol. 2007 Jun;46(6):394-405. Epub 2007 Feb 1.

Pivotal role in atherogenesis is played by macrophages, which are early site for lipid accumulation and mediate the inflammatory and immune response in the intima. Epidemiological evidence indicates that natural antioxidants reduce the risk of heart disease, but, so far, supplementation studies have failed to confirm any protective effects of these compounds against cardiovascular disease. This study evaluated the effects of the natural antioxidant alpha-tocotrienol and of the newly designed compound, FeAOX-6, which combines antioxidant structural features of both tocopherols and carotenoids into a single molecule, on macrophage functions involved in foam cell formation. FeAOX-6 or alpha-tocotrienol induce a strong dose-dependent reduction of cholesterol and reduce cholesterol accumulation in human macrophages. The extent of the reduction found with alpha-tocotrienol was greater than that induced by FeAOX-6 and did not correlate with their respective antioxidant capacities. Treatment of HMDM with alpha-tocotrienol or FeAOX-6 enhanced also tumor necrosis factor-alpha secretion. These results are consistent with a reduction in scavenger receptor activity, but we found that antioxidant treatment did not affect cholesterol uptake from modified LDL. The effects on release on pro-inflammatory prostanoid precursors, PGE(2) and cytokine suggest a variety of metabolic responses that are both dependent on antioxidant compounds and macrophages activation status.