Efficacy of vitamin E in protection against methotrexate induced placental injury in albino rats

Sara Mohamed Naguib Abdel Hafez, Eman Elbassuoni, Walaa Yehia Abdelzaher, Nermeen N Welson, Gaber El-Saber Batiha, Khalid J Alzahrani, Fatma Alzhraa Fouad Abdelbaky

Biomed Pharmacother . 2021 Jul;139:111637. doi: 10.1016/j.biopha.2021.111637. Epub 2021 May 6.

Abstract

Methotrexate (MXT) is a chemotherapeutic drug that has been used in a wide range of clinical practices. Unfortunately, the administration of MXT during pregnancy may induce abortion, fetal deformities, and intrauterine growth retardation. Vitamin E is an antioxidant agent that can ameliorate free radical damage. The current work aimed to shed more light on the possible protective effect of vitamin E against MXT induced placental toxicity and to determine the possible mechanisms; biochemically, histologically, and immunohistochemically. Four groups were used: control pregnant, Vitamin E (VIT E) pregnant, Methotrexate (MXT) pregnant, and Vitamin E Methotrexate (VIT E-MXT) pregnant. The placental tissues were processed for light, immunohistochemical, and electron microscopic study. Other samples were obtained for biochemical study; the placental oxidant/antioxidant status was evaluated. The results showed that MXT caused various placental morphological changes in the form of distorted chorionic projection with an accumulation of hemosiderin granules in the trophoblastic cells. Maternal blood vessels showed a homogenous acidophilic material Edema of the extra-embryonic fetal membranes was noticed. A significant decreased in placental weight as well as increase in the oxidative and inflammatory markers were detected. Increased COX2 and decreased eNOS expressions were observed in the MXT group if compared to the control group. VIT E significantly restored the normal histological and immunohistochemical appearance, placental weight, and oxidant/antioxidant balance. It could be concluded the biochemical, morphological, and morphometric findings suggested that vitamin E coadministration is promising in attenuating the placental toxic effect of methotrexate. In this study, VIT E decreased the inflammatory and oxidative stress effect of methotrexate on the placental tissue by enhancing the level of eNOS.

Read More

Effect of vitamin E on periodontitis: Evidence and proposed mechanisms of action

Saminathan Shadisvaaran, Kok-Yong Chin, Mohd-Said Shahida, Soelaiman Ima-Nirwana, Xin-Fang Leong

J Oral Biosci . 2021 Jun;63(2):97-103. doi: 10.1016/j.job.2021.04.001. Epub 2021 Apr 20.

Abstract

Background: Periodontitis is a noncommunicable inflammatory disease of the soft tissue and bone surrounding the teeth in the jaw, which affects susceptible individuals with poor oral hygiene. A growing interest has been seen in the use of dietary supplements and natural products for the treatment and prevention of periodontitis. Vitamin E consists of two major groups, namely tocopherols and tocotrienols, which are botanical lipophilic compounds with excellent anti-inflammatory and antioxidant properties.

Highlight: This review aimed to summarize the preclinical and clinical findings on the effects of vitamin E on periodontitis. The current literature suggests that vitamin E could improve the periodontal status by correcting redox status imbalance, reducing inflammatory responses, and promoting wound healing, thus highlighting the potential of vitamin E in the management of periodontitis.

Conclusion: Direct evidence for the use of vitamin E supplementation or treatment of periodontitis in humans is still limited. More well-designed and controlled studies are required to ascertain its effectiveness.

Read More

The effect of vitamin E treatment on selected immune and oxidative parameters in Kivircik ewes suffering from transport stress

Erdem Danyer, Tanay Bilal, Ayşen Altiner, İsmail Aytekin, Hasan Atalay

J Anim Physiol Anim Nutr (Berl) . 2021 Jun 11. doi: 10.1111/jpn.13560. Online ahead of print.

Abstract

The study aimed to investigate the effects of vitamin E injection for the prevention of transport stress on ewes. Kivircik ewes (2-3 years old, n = 24) were randomly separated into three groups; G1 (Control) and G2 treated with 14 ml. saline as the placebo, G3 treated with 2100 IU/ind. DL-alpha-tocopherol acetate prior to transport. G2 and G3 were transported at 80 km/h for 4 h on a truck. Serum samples were obtained before (T0) and after (T1) transport. Serum cortisol, catalase, IgG, ceruloplasmin, C-reactive protein, complement component 4, interleukin-1 beta, tumour necrosis factor-alpha, glutathione peroxidase (GPx), superoxide dismutase, malondialdehyde analyses performed by ELISA, and serum alpha-tocopherol concentrations were evaluated by HPLC-UV. Wilcoxon and Kruskal-Wallis tests were used for statistical assessments (p < 0.05). Alpha-tocopherol concentrations were founded 1.22 ± 0.82, 0.27 ± 0.14 and 0.14 ± 0.07 µmol/L, respectively, in G1, G2 and G3 at T1. Alpha-tocopherol concentration decreased significantly in G2 between T0 and T1. GPx concentrations were increased twofold in G2 and G3 between T0 and T1 (p < 0.01). As a result, G2 alpha-tocopherol concentrations decreased but, the stress and oxidative parameters tested in this study were not affected by treating 2100 IU/ind. DL-alpha-tocopherol acetate before transport.

Read More

Tocotrienols: Dietary Supplements for Chronic Obstructive Pulmonary Disease

Xiangming Ji, Hongwei Yao, Maureen Meister, Douglas S Gardenhire, Huanbiao Mo

Antioxidants (Basel) . 2021 May 31;10(6):883. doi: 10.3390/antiox10060883.

Abstract

Chronic obstructive pulmonary disease (COPD) is one of the leading causes of death worldwide. Emphysema and chronic bronchitis are the two major phenotypes of COPD, which have many symptoms, such as dyspnea, chronic cough, and mucus overproduction. Emphysema is characterized by the destruction of the alveolar wall, while chronic bronchitis is characterized by limitations in expiratory airflow. Cigarette smoking is the most significant risk factor for the pathogenesis of COPD in the developed world. Chronic inflammation contributes to the onset and progression of the disease and furthers the risk of comorbidities. Current treatment options and prevention strategies for COPD are very limited. Tocotrienols are a group of vitamin E molecules with antioxidant and anti-inflammatory properties. Individual tocotrienols (α, γ, and δ) have shown their ability to attenuate inflammation specifically via suppressing nuclear factor-κB-mediated cytokine production. The δ- and γ-forms of tocotrienols have been indicated as the most effective in the prevention of macrophage infiltration, production of reactive oxygen species, and cytokine secretion. This review briefly discusses the pathogenesis of COPD and the role of inflammation therein. Furthermore, we summarize the in vitro and in vivo evidence for the anti-inflammatory activity of tocotrienols and their potential application to COPD management. Coupled with the bioavailability and safety profile of tocotrienols, the ability of these compounds to modulate COPD progression by targeting the inflammation pathways renders them potential candidates for novel therapeutic approaches in the treatment of COPD patients.

Read More

alpha-Tocopherol supplementation reduces inflammation and apoptosis in high cholesterol mediated nonalcoholic steatohepatitis

Tugce Demirel-Yalciner, Erdi Sozen, Esra Ozaltin, Ali Sahin, Nesrin Kartal Ozer

Biofactors . 2021 May;47(3):403-413. doi: 10.1002/biof.1700. Epub 2021 Jun 8.

Abstract

Inflammation and apoptosis signaling are crucial steps in the progression from nonalcoholic fatty liver disease (NAFLD) to nonalcoholic steatohepatitis (NASH). Alpha-tocopherol, the most active form of vitamin E, is an important modulator of signaling mechanisms, but its involvement to cholesterol-induced NASH pathogenesis remains poorly defined. Herein we have reported a novel effect of α-tocopherol in the transition from hepatic steatosis to NASH. High cholesterol diet alone (without α-tocopherol) in rabbits elevated NASH development as indicated by increased inflammatory response, apoptotic activity and liver fibrosis. Such elevation results from induction of signaling mechanisms since the expressions of IL1β, phospho c-Jun/c-Jun ratio, JNK, caspase 9, CHOP and Bax were increased, and recruitment of macrophage, α-smooth muscle actin (α-SMA) and COL1A1 into the liver tissue were induced. Alpha-tocopherol supplementation inhibited inflammatory response, apoptosis and fibrosis development without affecting lipid accumulation in high cholesterol-induced NASH. Specifically, α-tocopherol lowered the inflammatory level as observed by reduced macrophage infiltration and JNK/c-Jun signaling. Lower inflammatory status co-occurred with the reduction of CHOP and Bax expressions as well as fibrosis-related COL1A1 and α-SMA levels. Taken together, α-tocopherol supplementation inhibits cholesterol-induced NASH development by lowering JNK/c-Jun/inflammation axis in addition to JNK/CHOP/apoptosis signaling, which might contribute to resistance against NAFLD/NASH transition.

Read More

Vitamin E regulates bovine granulosa cell apoptosis via NRF2-mediated defence mechanism by activating PI3K/AKT and ERK1/2 signalling pathways

Meimei Wang, Yan Li, Yanxia Gao, Qiufeng Li, Yufeng Cao, Yizhao Shen, Panliang Chen, Jinling Yan, Jianguo Li

Reprod Domest Anim . 2021 May 12. doi: 10.1111/rda.13950. Online ahead of print.

Abstract

High-yield dairy cows are usually subject to high-intensive cell metabolism and produce excessive reactive oxygen species (ROS). Once ROS is beyond the threshold of scavenging ability, it can induce oxidative stress, imperilling the reproductive performance of cows. The study was to investigate the effects of vitamin E (VE) on H2 O2 -induced proliferation and apoptosis of bovine granulosa cells and the underlying molecular mechanism. Granulosa cells were pretreated with VE for 24 hr and then treated with H2 O2 for 6 hr. The results showed that VE treatment decreased the intracellular ROS levels, increased the MDA content, and improved the antioxidant enzyme activity in a dose-dependent manner. Furthermore, VE treatment promoted the proliferation and inhibited apoptosis in granulosa cells by up-regulation of CCND1 and BCL2 levels and down-regulation of P21, BAX, and CASP3 levels. The cytoprotective effects of VE were attributed to the activation of the NRF2 signalling pathway. Knockdown of the NRF2 impaired the cytoprotective effects of VE on granulosa cells. Besides, the PI3K/AKT and ERK1/2, but not the p38 signalling pathway is involved in the regulation of VE-mediated cell proliferation and apoptosis. The PI3K/AKT inhibitor LY294002 and ERK1/2 inhibitor SCH772984 inhibited the VE-induced granulosa cell proliferation and promoted apoptosis, whereas the p38 inhibitor SB203580 had the opposite effects. These results were confirmed by proliferation and apoptosis-related gene expression at mRNA and protein levels. The results also showed that the PI3K/AKT inhibitor LY294002 and ERK1/2 inhibitor SCH772984 inhibited VE-induced NRF2, GCLC, GCLM, and HO-1 expression, whereas the p38 inhibitor SB203580 not. Overall, the results demonstrated that VE-regulated granulosa cell proliferation and apoptosis via NRF2-mediated defence system by activating the PI3K/AKT and ERK1/2 signalling pathway.

Read More

Vitamin E and selenium improve mesenchymal stem cell conditioned media immunomodulatory effects

Fereshteh Ghasemi, Majid Khoshmirsafa, Elahe Safari, Marzieh Asgari, Mehdi Alemrajabi, Shahrzad Nojehdehi, Samane Khorrami

Stem Cell Investig . 2021 May 7;8:9. doi: 10.21037/sci-2020-008. eCollection 2021.

Abstract

Background: Mesenchymal stem cells (MSCs) with immunoregulatory properties affect immune systems. Many studies showed that antioxidants such as vitamin E (Vit E) and selenium (Se) could improve stem cells survival. This study aims to investigate the effects of MSC conditioned media (CM) treated with Vit E and Se on immune cells.

Methods: MSCs were isolated and cultured with Vit E and Se. Immature dendritic cells (DCs) and peripheral blood mononuclear cells (PBMCs) were cultured with MSC CM treated with Vit E and Se. The expression of HLA-DR, CD86, CD40, and CD83 on mature DC were evaluated. DC supernatant and PBMCs supernatant was collected for the study of TGF-β, IL-10, and IL-12. PBMCs evaluated for the expression of T-bet, GATA3, RORγt, and FOXP3.

Results: MSC CM increased CD40 on myeloid DC (mDC). CD40 has been decreased in DC treated with MSC (Vit E) and MSC (Se) CM. HLA-DR expression on DCs and IL-12 level were significantly reduced in MSC (Vit E) CM. IL-10 concentration increased in DCs treated with MSC (Vit E) and MSC (Se) CM. Treatment of PBMCs with MSC CM decreased IL-10 level, FOXP3, and RORγt expression. On the other hand, the MSC (Vit E) CM and MSC (Se) CM decreased the IL-10 level and increased IL-12, T-bet, and RORγt.

Conclusions: According to the results, the treatment of MSC with Vit E and Se enhanced the ability of MSCs to inhibit DCs and improved immunomodulatory effects. Concerning the effect of MSC on PBMC, it seems that it increased RORγt expression through monocytes.

Read More

The effects of tocotrienols intake on obesity, blood pressure, inflammation, liver and glucose biomarkers: a meta-analysis of randomized controlled trials

Fengxiang Li, Biao Xu, Samira Soltanieh, Fernando Zanghelini, Ahmed Abu-Zaid, Jian Sun

Crit Rev Food Sci Nutr . 2021 Apr 28;1-14. doi: 10.1080/10408398.2021.1911926. Online ahead of print.

Abstract

The objective of this study is to accomplish a systematic review and meta-analysis of all randomized controlled trials that dissected the influence of tocotrienol supplementation on various anthropometric and cardiometabolic indices in all individuals, irrespective of health condition. This research was carried out in line with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) statement guidelines. 17 eligible articles were included in the final quantitative analysis. Current study revealed that tocotrienol consumption was not associated with CRP, WC, MDA, BMI, IL-6, HbA1C, ALT, AST, creatinine TNF-α, FPG, BW, DBP, and SBP. We did observe an overall increase in BW (SMD: 0.063 kg, 95% CI: -0.200, 0.327, p = 0.637) and DBP (SMD: 0.249 mmHg, 95% CI: 0.053, 0.446, p = 0.013). In addition, a significant reduction in SBP was observed (SMD: -0.616 mmHg, 95% CI: -1.123, -0.110, p = 0.017). In summary, our meta-analysis revealed that tocotrienol consumption was associated with increase in BW and DBP and decrease in SBP. Significant associations were not observed for other outcomes.

Read More

Effects of delta-tocotrienol supplementation on Glycemic Control, oxidative stress, inflammatory biomarkers and miRNA expression in type 2 diabetes mellitus: A randomized control trial

Wajiha Mahjabeen, Dilshad Ahmed Khan, Shakeel Ahmed Mirza, Muhammad Amjad Pervez

Phytother Res . 2021 Apr 25. doi: 10.1002/ptr.7113. Online ahead of print.

Abstract

The study aimed to ascertain the effects of delta-tocotrienol (δT3) supplementation on glycemic control, oxidative stress, inflammation and related micro-ribonucleic acid (miRNA) expression in patients with type 2 diabetes mellitus (T2DM). Total 110 patients of T2DM on oral hypoglycemic agents, were randomly divided into tocotrienol and placebo groups and given 250 mg δT3 or cellulose soft gel capsule once daily respectively for 24 weeks. Glycemic control, oxidative stress, inflammatory biomarkers, and miRNAs expression were measured in serum at baseline and end of the intervention by using standard laboratory methods. Compared to the placebo, δT3 supplementation resulted in a significant (p ≤ .05) reduction [mean difference (95% confidence interval)] in plasma glucose [-0.48 (-0.65, -0.30)], insulin [-1.19 (-1.51, -0.87)], homeostatic model assessment of insulin resistance [-0.67 (-0.86, -0.49)], glycosylated hemoglobin [-0.53 (-0.79, -0.28)], malondialdehyde [-0.34 (-0.45, -0.22)], high sensitive-C-reactive protein[-0.35 (-0.54, -0.16)], tumor necrosis factor-alpha [-1.22 (-1.62, -0.83)], and interleukin-6[-2.30 (-2.91, -1.68)]. More than twofold downregulation in miRNA-375, miRNA-34a, miRNA-21, and upregulation in miRNA-126, miRNA-132 expression was observed in the δT3 group compared to the placebo. The study demonstrated that δT3 supplementation in addition to oral hypoglycemic agents, improved glycemic control, inflammation, oxidative stress, and miRNA expression in T2DM without any adverse effect. Thus, δT3 might be considered as an effective dietary supplement to prevent long-term diabetic complications.

Read More

Inhibition of endoplasmic reticulum stress and activation of autophagy-protect intestinal and renal tissues from western diet-induced dysbiosis and abrogate inflammatory response to LPS: role of vitamin E

A M Shamseldeen, M Hamzawy, N A Mahmoud, L Rashed, S S Kamar, L A Harb, N Sharawy

J Biol Regul Homeost Agents . Mar-Apr 2021;35(2):457-471. doi: 10.23812/20-693-A.

Abstract

Diet pattern is an emerging risk factor for renal disease. The mechanism by which high-fat high fructose (western) diet mediates renal injury is not yet fully understood. The objective of the present study was to investigate the relationship between endoplasmic reticulum (ER) stress and autophagy in the development of renal impairment and aggravation of the inflammatory response. Eighty male rats were randomly divided into four groups as follows: a standard diet-fed (ConD), a high-fat high fructose diet fed (HFHF-V), ConD fed and orally supplemented with vitamin E (ConD-E), and HFHF fed and orally supplemented vitamin E (HFHF-E). After 12 weeks, either lipopolysaccharide (LPS) or saline was injected. We found that upregulation of endoplasmic reticulum stress-related proteins rendered the cells susceptible to injury induced by dysbiosis and microbiota-derived metabolites. A downregulation of autophagy and upregulation of caspase-12 resulted in the loss of intestinal integrity and renal tubular injury. Maintained ER stress also increased the inflammatory response to LPS. In contrast, vitamin E effectively ameliorated ER stress and promoted autophagy to protect intestinal and renal tissues. Our results provide insight into the influences of sustained ER stress activation and autophagy inhibition on the development of renal injury, which may contribute also to the enhanced inflammatory response.

Read More