Potential of the Compounds from Bixa orellana Purified Annatto Oil and Its Granules (Chronic ®) against Dyslipidemia and Inflammatory Diseases: In Silico Studies with Geranylgeraniol and Tocotrienols

Mateus Alves Batista, Abrahão Victor Tavares de Lima Teixeira Dos Santos, Aline Lopes do Nascimento, Luiz Fernando Moreira, Indira Ramos Senna Souza, Heitor Ribeiro da Silva, Arlindo César Matias Pereira, Lorane Izabel da Silva Hage-Melim, José Carlos Tavares Carvalho

Molecules . 2022 Feb 28;27(5):1584. doi: 10.3390/molecules27051584.

Abstract

Some significant compounds present in annatto are geranylgeraniol and tocotrienols. These compounds have beneficial effects against hyperlipidemia and chronic diseases, where oxidative stress and inflammation are present, but the exact mechanism of action of such activities is still a subject of research. This study aimed to evaluate possible mechanisms of action that could be underlying the activities of these molecules. For this, in silico approaches such as ligand topology (PASS and SEA servers) and molecular docking with the software GOLD were used. Additionally, we screened some pharmacokinetic and toxicological parameters using the servers PreADMET, SwissADME, and ProTox-II. The results corroborate the antidyslipidemia and anti-inflammatory activities of geranylgeraniol and tocotrienols. Notably, some new mechanisms of action were predicted to be potentially underlying the activities of these compounds, including inhibition of squalene monooxygenase, lanosterol synthase, and phospholipase A2. These results give new insight into new mechanisms of action involved in these molecules from annatto and Chronic®.

Read More

Tocotrienol in Pre-Eclampsia Prevention: A Mechanistic Analysis in Relation to the Pathophysiological Framework

Zaleha Abdullah Mahdy, Kok-Yong Chin, Nik Lah Nik-Ahmad-Zuky, Aida Kalok, Rahana Abdul Rahman

Cells . 2022 Feb 10;11(4):614. doi: 10.3390/cells11040614.

Abstract

The pathophysiology of pre-eclampsia involves two major pathways, namely systemic oxidative stress and subsequent generalised inflammatory response, which eventually culminates in endothelial cell injury and the syndrome of pre-eclampsia with multi-organ dysfunction. Aspirin has been used to reduce the risk of pre-eclampsia, but it only possesses anti-inflammatory properties without any antioxidant effect. Hence, it can only partially alleviate the problem. Tocotrienols are a unique form of vitamin E with strong antioxidant and anti-inflammatory properties that can be exploited as a preventive agent for pre-eclampsia. Many preclinical models showed that tocotrienol can also prevent hypertension and ischaemic/reperfusion injury, which are the two main features in pre-eclampsia. This review explores the mechanism of action of tocotrienol in relation to the pathophysiology of pre-eclampsia. In conclusion, the study provides sufficient justification for the establishment of a large clinical trial to thoroughly assess the capability of tocotrienol in preventing pre-eclampsia.

Read More

Effect of α-tocopherol in alleviating the lipopolysaccharide-induced acute lung injury via inhibiting nuclear factor kappa-B signaling pathways

Mu Hu, Jielai Yang, Yang Xu

Bioengineered . 2022 Feb;13(2):3958-3968. doi: 10.1080/21655979.2022.2031399.

Abstract

Acute respiratory distress syndrome (ARDS) leads to the acute lung injury (ALI), a form of diffused alveolars injury, accompanied by severe inflammation and oxidative damage of alveolar epithelial cells. α-Tocopherol (α-TOH), one of the eight isoforms of vitamin E, is a natural antioxidant-free radical. We aimed to understand the effect of α-TOH and mechanism involved in inducing the ALI. Lipopolysaccharide (LPS) is injected into the trachea of mice to generate ALI mouse models. α-TOH was used to administrate the mice intragastrically to detect the expression of inflammatory factors and antioxidant molecules by enzyme linked immunosorbent assay, hematoxylin-eosin staining and immunohistochemical staining. Mouse alveolar epithelial cell line (MLE-12 cells) was used to determine the effect of α-TOH on alveolar epithelial cells. Inflammatory factors such as, interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α shows significant increase in the lung tissues of the mice induced by LPS and reduction in the expressions of superoxide dismutase (SOD)1/2 and glutathione peroxidase (GSH-Px). After treatment with α-TOH, the inflammation and oxidative stress levels shows substantial reduction in the lung tissues of the mice. Moreover, α-TOH also increases the proliferation ability of MLE-12 cells in vitro and reduces apoptosis level. In addition, α-TOH reduces p65 phosphorylation and nuclear translocation in alveolar epithelial cells in vivo and in vitro, thus, inhibiting the activity of the nuclear factor kappa-B (NF-κB) signaling pathway. α-TOH reduces the inflammation and oxidative stress of lung tissue by inhibiting the NF-κB signaling pathway, thereby alleviating the LPS-induced ALI.

Read More

Vitamin E Decreases Cytotoxicity and Mitigates Inflammatory and Oxidative Stress Responses in a Ferret Organotypic Brain Slice Model of Neonatal Hypoxia-Ischemia

Sarah Kolnik, Kylie Corry, Kate Hildahl, Jeremy Filteau, Olivia White, Olivia Brandon, Lily Farid, AnnaMarie Shearlock, Daniel Moralejo, Sandra E Juul, Elizabeth Nance, Thomas R Wood

Dev Neurosci . 2022 Feb 8. doi: 10.1159/000522485. Online ahead of print.

Abstract

The gyrencephalic ferret brain is an excellent model in which to study hypoxia-ischemia (HI), a significant contributor to neurological injury in neonates. Vitamin E, an essential fat-soluble antioxidant, reduces oxidative stress and inflammation in both animal models and neonates. The aim of this study was to assess the effects of Vitamin E after oxygen glucose deprivation (OGD) in an organotypic ferret brain slice model of neonatal HI. We hypothesized that Vitamin E would decrease cytotoxicity, inflammation, and oxidative stress in OGD-exposed brain slices. Term-equivalent ferrets were sacrificed at postnatal (P) day 21-23 and 300µM whole hemisphere brain slices were obtained. During a 24h rest period, slices were cultured in either non-treated control conditions or with Erastin, a promotor of oxidative stress. Slices were then exposed to 2h of OGD followed by Vitamin E (25-100 IU/kg), Erastin (10µM) or Ferrostatin (1µM), an inhibitor of ferroptosis. Relative cytotoxicity was determined using an LDH assay, cell death was quantified via nuclear propidium iodide (PI) staining, oxidative stress was quantified via cellular GSH (glutathione) levels and target genes responsive to oxidative stress and inflammation were evaluated by qRT-PCR. OGD increased cytotoxicity, which was significantly reduced by treatment with Vitamin E. Vitamin E also preserved GSH after OGD and decreased amplification of certain markers of oxidative stress (CHAC1, SLC7A11) and inflammation (TNF-alpha, IL-8). Vitamin E remained protective after pretreatment with Erastin and was more protective than Ferrostatin, presumably due to its added anti-inflammatory properties. Results from the ferret whole hemisphere OGD model support the premise that Vitamin E neuroprotection is mediated by restoring GSH and acutely decreasing inflammation and oxidative stress after neonatal HI brain injury.

Read More

Gamma-tocopherol, a major form of vitamin E in diets: Insights into antioxidant and anti-inflammatory effects, mechanisms, and roles in disease management

Qing Jiang, Suji Im, James G Wagner, Michelle L Hernandez, David B Peden

Free Radic Biol Med . 2022 Jan;178:347-359. doi: 10.1016/j.freeradbiomed.2021.12.012. Epub 2021 Dec 9.

Abstract

γ-Tocopherol (γT) is a major form of vitamin E in the US diet and the second most abundant vitamin E in the blood and tissues, while α-tocopherol (αT) is the predominant vitamin E in tissues. During the last >25 years, research has revealed that γT has unique antioxidant and anti-inflammatory activities relevant to disease prevention compared to αT. While both compounds are potent lipophilic antioxidants, γT but not αT can trap reactive nitrogen species by forming 5-nitro-γT, and appears to show superior protection of mitochondrial function. γT inhibits ionophore-stimulated leukotrienes by blocking 5-lipoxygenase (5-LOX) translocation in leukocytes, decreases cyclooxygenase-2 (COX-2)-catalyzed prostaglandins in macrophages and blocks the growth of cancer cells but not healthy cells. For these activities, γT is stronger than αT. Moreover, γT is more extensively metabolized than αT via cytochrome P-450 (CYP4F2)-initiated side-chain oxidation, which leads to formation of metabolites including 13′-carboxychromanol (13′-COOH) and carboxyethyl-hydroxychroman (γ-CEHC). 13′-COOH and γ-CEHC are shown to be the predominant metabolites found in feces and urine, respectively. Interestingly, γ-CEHC has natriuretic activity and 13′-COOH inhibits both COX-1/-2 and 5-LOX activity. Consistent with these mechanistic findings of γT and metabolites, studies show that supplementation of γT mitigates inflammation and disease symptoms in animal models with induced inflammation, asthma and cancer. In addition, supplementation of γT decreased inflammation markers in patients with kidney diseases and mild asthma. These observations support that γT may be useful against inflammation-associated diseases.

Read More

The α-tocopherol-derived long-chain metabolite α-13′-COOH mediates endotoxin tolerance and modulates the inflammatory response via MAPK and NFκB pathways

Martin Schubert, Stefan Kluge, Elena Brunner, Simona Pace, Marc Birringer, Oliver Werz, Stefan Lorkowski

Free Radic Biol Med . 2022 Jan;178:83-96. doi: 10.1016/j.freeradbiomed.2021.11.032. Epub 2021 Nov 27.

Abstract

Scope: The long-chain metabolites of (LCM) vitamin E are proposed as the active regulatory metabolites of vitamin E providing, with their anti-inflammatory properties, an explanatory approach for the inconsistent effects of vitamin E on inflammatory-driven diseases. We examined the modulation of cytokine expression and release from macrophages, a fundamental process in many diseases, to gain insights into the anti-inflammatory mechanisms of the α-tocopherol-derived LCM α-13′-COOH.

Methods and results: Suppressed gene expression of C-C motif chemokine ligand 2 (Ccl2), tumor necrosis factor (Tnf), and interleukin (Il) 6 in response to lipopolysaccharides by 24 h pre-treatment with α-13′-COOH in RAW264.7 macrophages was revealed using quantitative reverse transcription PCR. Further, reduced secretion of IL1β and CCL2 was found in this setup using flow cytometry. In contrast, 1 h pre-treatment suppressed only CCL2. Consequent gene expression analysis within 24 h of α-13′-COOH treatment revealed the induction of mitogen-activated protein kinases (MAPK) and nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) negative feedback regulators including the ‘master regulators’ dual-specificity phosphatase 1 (Dusp1/Mkp1) and tumor necrosis factor induced protein 3 (Tnfaip3/A20). Approaches with immunoblots and chemical antagonists suggest a feedback induction via activation of extracellular-signal regulated kinase (ERK), p38 MAPK and NFκB pathways.

Conclusions: CCL2 is suppressed in murine macrophages by α-13′-COOH and the indirect suppression of MAPK and NFκB pathways is likely a relevant process contributing to anti-inflammatory actions of α-13′-COOH. These results improve the understanding of the effects of α-13′-COOH and provide a basis for new research strategies in the context of inflammatory diseases.

Read More

Tocotrienol Supplementation Led to Higher Serum Levels of Lysophospholipids but Lower Acylcarnitines in Postmenopausal Women: A Randomized Double-Blinded Placebo-Controlled Clinical Trial

Chwan-Li Shen, Huanbiao Mo, Dale M Dunn, Bruce A Watkins

Front Nutr . 2021 Dec 24;8:766711. doi: 10.3389/fnut.2021.766711. eCollection 2021.

Abstract

Osteoporosis is a major health problem in postmenopausal women. Herein we evaluated the effects of 12-week tocotrienols (TT) supplementation on serum metabolites in postmenopausal, osteopenic women. Eighty-nine participants (59.7 ± 6.8 yr, BMI 28.7 ± 5.7 kg/m2) were assigned to 3 treatments: placebo (860 mg olive oil/day), 300mg TT (300 mg TT/day), and 600mg TT (600 mg TT/day) for 12 weeks. TT consisted of 90% δ-TT and 10% γ-TT. In this metabolomic study, we evaluated the placebo and 600mgTT at baseline and 12 weeks. As expected, TT and its metabolite levels were higher in the supplemented group after 12 weeks. At baseline, there were no differences in demographic parameters or comprehensive metabolic panels (CMP). Metabolomics analysis of serum samples revealed that 48 biochemicals were higher and 65 were lower in the 600mg TT group at 12 weeks, compared to baseline. The results confirmed higher serum levels of tocotrienols and lysophospholipids, but lower acylcarnitines and catabolites of tryptophan and steroids in subjects given 600mg TT. In summary, 12-week TT supplementation altered many serum metabolite levels in postmenopausal women. The present study supports our previous findings that TT supplementation helps reduce bone loss in postmenopausal osteopenic women by suppressing inflammation and oxidative stress. Furthermore, the body incorporates TT which restructures biomembranes and modifies phospholipid metabolism, a response potentially linked to reduced inflammation and oxidative stress.

Read More

Serum vitamin E levels and chronic inflammatory skin diseases: A systematic review and meta-analysis

Xiaofang Liu, Guang Yang, Mengxin Luo, Qi Lan, Xiaoxia Shi, Haoyuan Deng, Ningning Wang, Xuezhu Xu, Cong Zhang

PLoS One . 2021 Dec 14;16(12):e0261259. doi: 10.1371/journal.pone.0261259. eCollection 2021.

Abstract

Background: Vitamin E has long been linked to skin health, including all of its possible functions in cosmetic products, to its roles in membrane integrity and even the aging process. However, reports on the relationship between serum vitamin E levels and the risk of chronic inflammatory skin diseases have been inconsistent. We performed a systematic review and meta-analysis to evaluate the association between serum vitamin E levels and chronic inflammatory skin diseases.

Methods: We searched the PubMed, Web of Science and Scopus databases, with no time limit up to 30.06.2021. Studies examining serum vitamin E levels in patients with chronic inflammatory skin diseases were selected.

Results: Twenty articles met the inclusion criteria. Compared with controls, a lower vitamin E level was found in patients with vitiligo (SMD: -0.70, 95% CI: -1.21 to -0.19), psoriasis (SMD: -2.73, 95% CI: -3.57 to -1.18), atopic dermatitis (SMD: -1.08, 95% CI: -1.80 to -0.36) and acne (SMD: -0.67, 95% CI: -1.05 to -0.30).

Conclusions: Our meta-analysis showed that serum vitamin E levels were lower in patients suffering from vitiligo, psoriasis, atopic dermatitis and acne. This study highlights the need to evaluate vitamin E status to improve its level in patients with skin diseases.

Read More

A double-blind randomised controlled trial on the effect of Tocovid, a tocotrienol-rich capsule on postoperative atrial fibrillation at the National Heart Institute, Kuala Lumpur: an interim blinded analysis

Ahmad Farouk Musa, Jeswant Dillon, Mohamed Ezani Md Taib, Alwi Mohamed Yunus, Abdul Rais Sanusi, Mohd Nazeri Nordin, Julian A Smith

J Cardiothorac Surg . 2021 Nov 24;16(1):340. doi: 10.1186/s13019-021-01721-6.

Abstract

Introduction: Post-operative atrial fibrillation (POAF) is associated with poorer outcomes, increased resource utilisation, morbidity and mortality. Its pathogenesis is initiated by systemic inflammation and oxidative stress. It is hypothesised that a potent antioxidant and anti-inflammatory agent such as tocotrienol, an isomer of Vitamin E, could reduce or prevent POAF.

Aims: The aim of this study is to determine whether a potent antioxidative and anti-inflammatory agent, Tocovid, a tocotrienol-rich capsule, could reduce the incidence of POAF and affect the mortality and morbidity as well as the duration of ICU, HDU and hospital stay.

Methods: This study was planned as a prospective, randomised, controlled trial with parallel groups. The control group received placebo containing palm superolein while the treatment group received Tocovid capsules. We investigated the incidence of POAF, the length of hospital stay after surgery and the health-related quality of life.

Results: Recruitment commenced in January 2019 but the preliminary results were unblinded as the study is still ongoing. Two-hundred and two patients have been recruited out of a target sample size of 250 as of January 2021. About 75% have completed the study and 6.4% were either lost during follow-up or withdrew; 4% of participants died. The mean age group was 61.44 ± 7.30 years with no statistical difference between the groups, with males having a preponderance for AF. The incidence of POAF was 24.36% and the mean time for developing POAF was 55.38 ± 29.9 h post-CABG. Obesity was not a predictive factor. No statistically significant difference was observed when comparing left atrial size, NYHA class, ejection fraction and the premorbid history. The mean cross-clamp time was 71 ± 34 min and the mean bypass time was 95 ± 46 min, with no difference between groups. There was a threefold increase in death among patients with POAF (p = 0.008) and an increase in the duration of ICU stay (p = 0.01), the total duration of hospital stay (p = 0.04) and reintubation (p = 0.045).

Conclusion: A relatively low incidence rate of POAF was noted although the study is still ongoing. It remains to be seen if our prophylactic intervention using Tocovid would effectively reduce the incidence of POAF.

Read More

Metabolism of natural forms of vitamin E and biological actions of vitamin E metabolites

Qing Jiang

Free Radic Biol Med . 2021 Nov 14;S0891-5849(21)00806-6. doi: 10.1016/j.freeradbiomed.2021.11.012. Online ahead of print.

Abstract

Natural forms of vitamin E comprise four tocopherols and four tocotrienols. During the last twenty years, there have been breakthroughs in our understanding of vitamin E metabolism and biological activities of vitamin E metabolites. Research has established that tocopherols and tocotrienols are metabolized via ω-hydroxylase (CYP4F2)-initiated side chain oxidation to form 13′-hydroxychromanol and 13′-carobyxychromanol (13′-COOH). 13′-COOHs are further metabolized via β-oxidation and sulfation to intermediate carboxychromanols, terminal metabolite carboxyethyl-hydroxychroman (CEHC), and sulfated analogs. Animal and human studies show that γ-, δ-tocopherol and tocotrienols are more extensively metabolized than α-tocopherol (αT), as indicated by higher formation of CEHCs and 13′-COOHs from non-αT forms than those from αT. 13′-COOHs are shown to be inhibitors of cyclooxygenase-1/-2 and 5-lipoxygenase and much stronger than CEHCs for these activities. 13′-COOHs inhibit cancer cell growth, modulate cellular lipids and activate peroxisome proliferator-activated receptor-γ and pregnane X receptor. Consistent with mechanistic findings, αT-13′-COOH or δTE-13′-COOH, respective metabolites of αT or δ-tocotrienol, show anti-inflammatory and cancer-preventive effects, modulates the gut microbiota and prevents β-amyloid formation in mice. Therefore, 13′-COOHs are a new class of bioactive compounds with anti-inflammatory and anti-cancer activities and potentially capable of modulating lipid and drug metabolism. Based on the existing evidence, this author proposes that metabolites may contribute to disease-preventing effects of γ-, δ-tocopherol and tocotrienols. The role of metabolites in αT’s actions may be somewhat limited considering controlled metabolism of αT because of its association with tocopherol-transport protein and less catabolism by CYP4F2 than other vitamin E forms.

Read More