The combined effects of novel tocotrienols and lovastatin on lipid metabolism in chickens

Qureshi AA, Peterson DM.

Atherosclerosis. 2001 May;156(1):39-47.

Both lovastatin (a fungal product) and a tocotrienol rich fraction (TRF(25), a mixture of tocols isolated from stabilized and heated rice bran containing desmethyl [d-P(21)-T3] and didesmethyl [d-P(25)-T3] tocotrienols) are potent hypocholesterolemic agents, although they suppress cholesterol biosynthesis by different mechanisms. To determine additive and/or synergistic effects of both agents, chickens were fed diets supplemented with 50 ppm TRF(25) or d-P(25)-T3 in combination with 50 ppm lovastatin for 4 weeks. Combinations of d-P(25)-T3 with lovastatin were found most effective in reducing serum total cholesterol and low-density lipoprotein (LDL) cholesterol compared to the control diet or individual supplements. The mixture of TRF(25)+lovastatin inhibited the activity of beta-hydroxy-beta-methylglutaryl coenzymeA reductase (21%) compared to lovastatin alone, which did not change its activity. Cholesterol 7alpha-hydroxylase activity was increased by lovastatin (11%) and by lovastatin plus TRF(25) (19%). TRF(25)+lovastatin decreased levels of serum total cholesterol (22%), LDL cholesterol (42%), apolipoprotein B (13-38%), triglycerides (19%), thromboxane B(2) (34%) and platelet factor 4 (26%), although high-density lipoprotein (HDL) cholesterol, and apolipoprotein A1 levels were unaffected. The mixture of TRF(25)+lovastatin showed greater effects than did the individual treatments alone, reflecting possible additive pharmacological actions. The effects, however, of the d-P(25)-T3/lovastatin combination were no greater than that of d-P(25)-T3 alone, possibly indicating that d-P(25)-T3 produced a maximum cholesterol lowering effect at the concentration used.