Vitamin E – Phosphatidylethanolamine Interactions in Mixed Membranes With Sphingomyelin: Studies by 2 H NMR

Andres T Cavazos, Jacob J Kinnun, Justin A Williams, Stephen R Wassall

Chem Phys Lipids . 2020 May 31;104910. doi: 10.1016/j.chemphyslip.2020.104910. Online ahead of print.


Among the structurally diverse collection of lipids that comprise the membrane lipidome, polyunsaturated phospholipids are particularly vulnerable to oxidation. The role of α-tocopherol (vitamin E) is to protect this influential class of membrane phospholipid from oxidative damage. Whether lipid-lipid interactions play a role in supporting this function is an unanswered question. Here, we compare the molecular organization of polyunsaturated 1-[2H31]palmitoyl-2-docosahexaenoylphosphatidylethanolamine (PDPE-d31) and, as a control, monounsaturated 1-[2H31]palmitoyl-2-oleoylphosphatidylethanolamine (POPE-d31) mixed with sphingomyelin (SM) and α-tocopherol (α-toc) (2:2:1 mol) by solid-state 2H NMR spectroscopy. In both cases the effect of α-tocopherol appears similar. Spectral moments reveal that the main chain melting transition of POPE-d31 and PDPE-d31 is broadened beyond detection. A spectral component attributed to the formation of inverted hexagonal HII phase in coexistence with lamellar Lα phase by POPE-d31 (20 %) and PDPE-d31 (18 %) is resolved following the addition of α-toc. Order parameters in the remaining Lα phase are increased slightly more for POPE-d31 (7%) than PDPE-d31 (4%). Preferential interaction with polyunsaturated phospholipid is not apparent in these results. The propensity for α-toc to form phase structure with negative curvature that is more tightly packed at the membrane surface, nevertheless, may restrict the contact of free radicals with lipid chains on phosphatidylethanolamine molecules that accumulate polyunsaturated fatty acids.

Read More

Metabolic Benefits of Annatto-Extracted Tocotrienol on Glucose Homeostasis, Inflammation, and Gut Microbiome

Eunhee Chung, Moamen M Elmassry, Pratibha Kottapalli, Kameswara Rao Kottapalli, Gurvinder Kaur, Jannette M Dufour, Kandis Wright, Latha Ramalingam, Naima Moustaid-Moussa, Rui Wang, Abdul N Hamood, Chwan-Li Shen

Nutr Res . 2020 May;77:97-107. doi: 10.1016/j.nutres.2020.04.001. Epub 2020 Apr 17.


Emerging evidence suggests that the gut microbiome plays an important role in the pathophysiology of both obesity and type 2 diabetes mellitus. We previously reported that dietary annatto-extracted tocotrienol exerts beneficial effects by modulating inflammatory responses in mice fed a high-fat diet (HFD). The purpose of this study was to test the hypothesis that tocotrienol supplementation when combined with an HFD would result in an altered gut microbiota composition. For 14 weeks, forty-eight male C57BL/6J mice were assigned to 4 groups-low-fat diet, HFD, HFD supplemented with annatto-extracted tocotrienol at 800 mg/kg diet (AT), and HFD supplemented with metformin at 200 mg/kg diet. Glucose homeostasis was assessed by glucose and insulin tolerance tests, serum and pancreas insulin levels, and histological assessments of insulin and glucagon in pancreatic tissue. The concentrations of adipokines were measured in white adipose tissues. For the gut microbiome analysis, cecal content was collected, DNA was extracted, and 16S rRNA gene sequencing was performed. AT supplementation improved glucose homeostasis and lowered resistin, leptin, and interleukin-6 levels in white adipose tissue. Relative to the HFD group, AT-supplemented mice showed a decrease in the Firmicutes to Bacteroidetes ratio and had a lower abundance of Ruminococcus lactaris, Dorea longicatena, and Lachnospiraceae family. The relative abundance of Akkermansia muciniphila was increased in the AT group compared to the low-fat diet group. The association between the metabolic improvements and the identified bacterial taxa suggests a potential metabolic modulation caused by AT supplementation through the gut microbiota composition in mice fed an HFD.

Read More

Vitamins A, B, C, and E are good for your skin

Vitamins are essential for mental well-being, a strong immune system, and overall health. But it’s not all about what’s on the inside. Vitamins can also help with what’s on the outside: your skin. And if you eat right and use certain vitamin-laced skincare products, you may help prevent premature ageing skin. Here’s which vitamins can help and how.

Read More

Effect of Folic Acid and Vitamin E on Promoter DNA Methylation and Expression of TGF-β1, ESR-1 and CDH-1 in the Uterus of STZ-induced Diabetic Rats

Maryam Tabebordbar, Mostafa Moradi Sarabi, Sina Vakili, Razieh Zare, Fatemeh Zal

Arch Physiol Biochem . 2020 May 29;1-7. doi: 10.1080/13813455.2020.1770798.


The present study is the first attempt made to investigate the effects of diabetes on expression and promoter DNA methylation of TGF-β1, ESR-1, and CDH-1 genes and also the effects of folic acid (FA) and vitamin E (Vit E) supplementations on improving diabetes mellitus. STZ-induced diabetic rats were treated with Vit E (200 mg/kg/day) and FA (25 mg/kg/day) for 8 weeks and expression and DNA methylation of TGF-β1, ESR-1, and CDH-1 genes in uterus were analysed. Data indicated that diabetes increases the expression of TGFβ-1 and ESR-1 and decreases CDH-1 expression and TGFβ-1 promoter methylation in the uterus of rats. Vit E and FA improved the negative effects of diabetes by decreasing the expression of TGFβ-1 and ESR-1 and increasing that of CDH-1 in diabetic rats. In conclusion, these findings emphasise that Vit E and FA supplementations could improve negative effects caused by diabetes on uterus function and fertility in diabetic rats.

Read More

Vitamin E-Bonded Membranes Do Not Influence Markers of Oxidative Stress in Hemodialysis Patients With Homozygous Glutathione Transferase M1 Gene Deletion

Petar Djuric, Sonja Suvakov, Tatjana Simic, Dragana Markovic, Djurdja Jerotic, Aleksandar Jankovic 1, Ana Bulatovic, Jelena Tosic Dragovic, Tatjana Damjanovic, Jelena Marinkovic, Radomir Naumovic, Nada Dimkovic

Toxins (Basel) . 2020 May 27;12(6):E352. doi: 10.3390/toxins12060352.


Background: Increased oxidative stress is a hallmark of end-stage renal disease. Hemodialysis (HD) patients lacking glutathione transferase M1 (GSTM1) enzyme activity exhibit enhanced oxidative DNA damage and higher mortality rate than those with active GSTM1 enzyme. To our knowledge, this is the first study to use the vitamin E-bonded membranes (VEM) in patients with homozygous GSTM1 gene deletion, and we aimed to determine the effect of VEM on oxidative and inflammatory status in HD patients with homozygous GSTM1 gene deletion.

Methods: GSTM1 genotypes were determined by polymerase chain reaction (PCR) in 170 chronic HD patients. Those with GSTM1-null genotype were randomized and 80 were included in the study. Forty of them were dialyzed for three months with VEM, while the other forty were dialyzed with high-flux same-surface polysulfone dialyzers. Markers of protein and lipid oxidative damage and inflammation (thiol groups, malondialdehyde (MDA), Interleukin-6 (IL-6)), together with plasma antioxidant activity (glutathione peroxidase (GPX), superoxide dismutase (SOD)) were determined.

Results: Seventy-five patients finished the study. There were no differences at baseline in markers of protein and lipid oxidative damage, inflammation and plasma antioxidant activity. After three months of therapy, GPX, MDA, and thiol groups increased significantly in both groups, but without statistical significance between groups. SOD and C reactive protein (CRP) did not change significantly during the three-month period. IL-6 increased in the control group, and at the same time, decreased in the VEM group, but without statistical significance. Hemoglobin (Hb) value, red blood cells, erythropoiesis resistance index (ERI), serum ferritin and iron did not change significantly within or between groups. Regarding other laboratory parameters, proteins, albumins, triglycerides, serum phosphorus, serum bicarbonate and Kt/V showed significant improvements within groups but with no significant difference between groups.

Conclusions: Our data shows that therapy with VEM over three months had no benefit over standard polysulfone membrane in decreasing by-products of oxidative stress and inflammation in dialysis patients lacking GSTM1 enzyme activity.

Read More

Effects of Coadministration of DHA and Vitamin E on Spermatogram, Seminal Oxidative Stress, and Sperm Phospholipids in Asthenozoospermic Men: A Randomized Controlled Trial

Ghazaleh Eslamian, Naser Amirjannati, Nazanin Noori, Mohammad-Reza Sadeghi, Azita Hekmatdoost

Am J Clin Nutr . 2020 May 26;nqaa124. doi: 10.1093/ajcn/nqaa124. Online ahead of print.


Background: It is unknown which compounds in spermatozoa or seminal plasma may be involved in the regulation of sperm motility.

Objectives: The aim of this study was to investigate the effects of DHA (22:6n-3), vitamin E, and their probable interactions in men with asthenozoospermia.

Methods: A factorial, randomized, double-blind, placebo-controlled trial was conducted in infertility clinics in Tehran, Iran. The participants were idiopathic asthenozoospermic men aged 20-45 y, with normal endocrine function. Their concentration of spermatozoa and percentage of morphologically normal spermatozoa were equal to or above the lower reference limits, according to the fifth edition of the WHO guideline. Out of 717 men referred to the infertility clinics, 180 asthenozoospermic men were randomly assigned to 1 of 4 groups according to stratified blocked randomization by age and sperm concentration. Participants took daily 465 mg DHA plus 600 IU vitamin E (DE), 465 mg DHA plus placebo (DP), 600 IU vitamin E plus placebo (EP), or both placebo capsules (PP) for 12 wk. Sperm characteristics, oxidative stress of seminal plasma, serum and sperm membrane fatty acids, dietary intakes, anthropometric measurements, and physical activity were measured at baseline and after 12 wk.

Results: After the intervention, mean ± SD sperm progressive motility was greater in the DE group (27.9 ± 2.8) than in the DP (25.7 ± 3.4), EP (26.1 ± 2.8), and PP (25.8 ± 2.6) groups (P < 0.05). Sperm count (P = 0.001) and concentration (P = 0.044) increased significantly in the DE group compared with the other 3 groups, whereas other semen parameters were not significantly different between the groups after the intervention. Serum concentrations of n-3 PUFAs were significantly higher in the DE and DP groups than in the EP and PP groups.

Conclusions: Combined DHA and vitamin E supplements led to increased sperm motility; however, no significant changes occurred in sperm morphology and vitality in asthenozoospermic men.

Read More


Anti-Inflammatory Effects of Vitamin E in Response to Candida albicans

Silvana Barros, Ana Paula D Ribeiro, Steven Offenbacher, Zvi G Loewy

Microorganisms . 2020 May 26;8(6):E804. doi: 10.3390/microorganisms8060804.


Oral mucositis, inflammation, and ulceration that occur in the oral cavity can manifest in significant pain. A formulation was designed to investigate the potential of vitamin E to ameliorate inflammation resulting from Candida albicans in cell-based systems. Human gingival fibroblasts and THP1 cells were stimulated with heat killed C. albicans and Porphyromonas gingivalis LPS (agonists). Unstimulated cells were included as controls. Cells were also simultaneously treated with a novel denture adhesive formulation that contains vitamin E (antagonist). The experimental conditions included cells exposed to the experimental formulation or the vehicle for 2 h for mRNA extraction and analysis, and cells left for 24 h under those experimental conditions for analysis of protein expression by ELISA. ssAffymetrix expression microarray pathway analyses demonstrated that the tested formulation exhibited a statistically significant (p < 0.05) inhibition of the following key inflammatory pathways: TLR 6, IL-1 signaling (IRAK, A20), NF-kappaB, IL-6 signaling (gp130, JK2 and GRB2), TNF signaling (TNF receptor) and Arachidonic acid metabolism (PLA2). Quantitative PCR array analysis confirmed the downregulation of key inflammatory genes when cells under adhesive treatment were challenged with heat killed C. albicans. PGE2 secretion was inhibited by the tested formulation only on THP1 cells after 24 h stimulation with C. albicans. These results suggest that the active formulation containing vitamin E acetate can modulate inflammatory responses, through anti-inflammatory actions as indicated by in vitro experimental conditions.

Read More

Form of Vitamin E Protects Brain Against Stroke

A natural form of vitamin E called alpha-tocotrienol can trigger the production of a protein in the brain that clears toxins from nerve cells, preventing those cells from dying after a stroke, according to new research appearing online in Stroke.

This natural substance, one of three mechanisms this form of vitamin E uses to protect brain cells after a stroke, may be more potent than drugs targeting single mechanisms for preventing stroke damage, according to Ohio State University scientists who have studied the nutrient for more than a decade.

These researchers previously reported that the tocotrienol form of vitamin E protects the brain after a stroke by blocking an enzyme from releasing toxic fatty acids and inhibiting the activity of a gene that can lead to neuron death.

Read More

Targeted Nutritional Intervention for Patients With Mild Cognitive Impairment: The Cognitive impAiRmEnt Study (CARES) Trial 1

Rebecca Power, John M Nolan, Alfonso Prado-Cabrero, Robert Coen, Warren Roche, Tommy Power, Alan N Howard, Ríona Mulcahy

J Pers Med . 2020 May 25;10(2):E43. doi: 10.3390/jpm10020043.


Omega-3 fatty acids (ω-3FAs), carotenoids, and vitamin E are important constituents of a healthy diet. While they are present in brain tissue, studies have shown that these key nutrients are depleted in individuals with mild cognitive impairment (MCI) in comparison to cognitively healthy individuals. Therefore, it is likely that these individuals will benefit from targeted nutritional intervention, given that poor nutrition is one of the many modifiable risk factors for MCI. Evidence to date suggests that these nutritional compounds can work independently to optimize the neurocognitive environment, primarily due to their antioxidant and anti-inflammatory properties. To date, however, no interventional studies have examined the potential synergistic effects of a combination of ω-3FAs, carotenoids and vitamin E on the cognitive function of patients with MCI. Individuals with clinically confirmed MCI consumed an ω-3FA plus carotenoid plus vitamin E formulation or placebo for 12 months. Cognitive performance was determined from tasks that assessed global cognition and episodic memory. Ω-3FAs, carotenoids, and vitamin E were measured in blood. Carotenoid concentrations were also measured in tissue (skin and retina). Individuals consuming the active intervention (n = 6; median [IQR] age 73.5 [69.5-80.5] years; 50% female) exhibited statistically significant improvements (p < 0.05, for all) in tissue carotenoid concentrations, and carotenoid and ω-3FA concentrations in blood. Trends in improvements in episodic memory and global cognition were also observed in this group. In contrast, the placebo group (n = 7; median [IQR] 72 (69.5-75.5) years; 89% female) remained unchanged or worsened for all measurements (p > 0.05). Despite a small sample size, this exploratory study is the first of its kind to identify trends in improved cognitive performance in individuals with MCI following supplementation with ω-3FAs, carotenoids, and vitamin E.

Read More

Effect of Anoectochilus roxburghii flavonoids extract on H2O2 – Induced oxidative stress in LO2 cells and D-gal induced aging mice model

Wang L, Chen Q, Zhuang S, Wen Y, Cheng W, Zeng Z, Jiang T, Tang C

J Ethnopharmacol. 2020 May 23;254:112670. doi: 10.1016/j.jep.2020.112670. Epub 2020 Mar 3.



Anoectochilus roxburghii (A. roxburghii) is a popular folk medicine in many Asian countries, which has been used traditionally for treatment of some diseases such as diabetes, tumors, hyperlipemia, and hepatitis. The ethanol extract from A. roxburghii was recently shown to exert better ability to scavenge free radicals in vitro and possess antioxidant on natural aging mice in vivo.


This study is to characterize the chemical composition, and investigate the protective effect of the A. roxburghii flavonoids extract (ARF) against hydrogen peroxide (H2O2)-induced oxidative stress in LO2 cells in vitro and D-galactose (D-gal)-induced aging mice model in vivo, and explore the underlying mechanisms.


The chemical components of the flavonoids extract fromA. roxburghii were detected by ultraperformance lipid chromatography coupled with quadrupole-time-of-flight mass spectrometry (UPLC-QTOF-MS/MS). H2O2 was used to establish an oxidative stress model in LO2 cells. Cytotoxic and protective effects of ARF on the LO2 cells were determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. Moreover, the levels of superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), and malondialdehyde (MDA) in cell supernatants were measured by commercial reagent kits. Kun-Ming mice were induced to aging with D-gal (400 mg/kg, BW) by subcutaneous injection for 58 days. From the 28th day to the 58th day of D-gal treatment, ARF (122.5, 245 and 490 mg/kg, BW) and vitamin E (100 mg/kg, BW) were orally administrated to aging mice once a day for consecutive 30 days. After 25 days of the treatment with ARF, learning and memory were assessed using Morris Water Maze (MWM). At the end of the test period, the animals were euthanized by cervical dislocation, and the levels of SOD, GSH-PX, and MDA in serum, liver homogenates and brain homogenates were measured. The levels of monoamine oxidase (MAO) and acetylcholinesterase (AchE) were determined in brain homogenates. Skin and liver histopathological morphology were observed by H&E staining. Furthermore, antioxidant-related gene expression levels in the liver were carried out by quantitative real-time polymerase chain reaction (qRT-PCR).


Nine flavonoids were identified in the extracts of A. roxburghii. In vitro assay, a high concentration of ARF (>612.5 μg/ml) reduced the survival rate and had toxic effects on LO2 cells. In addition, ARF (245 μg/ml, 490 μg/ml) and Vitamin C (200 μg/ml) markedly inhibited generations of MDA and increased activities of SOD, GSH-PX in H2O2-induced LO2 cells supernatants. In vivo assay, ARF (122.5 mg/kg, 245 mg/kg and 490 mg/kg) and Vitamin E (100 mg/kg) not only ameliorated learning and memory ability but also improved skin and liver pathological alterations. Strikingly, ARF significantly decreased MDA and MAO levels, markedly enhanced antioxidant enzyme (SOD and GSH-PX) activities. Further, compared to the D-gal group, ARF could obviously up-regulate glutathione peroxidase-1 (GPx-1) and glutathione peroxidase-4 (GPx-4) mRNA levels.


These findings suggested that ARF protects LO2 cells against H2O2-induced oxidative stress and exerts the potent anti-aging effects in D-gal aging mice model, which may be related to the inhibition of oxidative stress. Flavonoid compounds may contribute to the anti-oxidative capability and modulating aging.

Read More