We are studying novel tocotrienols, which have a number of activities that might interfere with the formation of atherosclerotic plaques, including hypocholesterolemic, antioxidant, anti-inflammatory and antiproliferation effects. This study compared the effects of alpha-tocopherol, the tocotrienol-rich fraction (TRF(25)) and didesmethyl tocotrienol (d-P(25)-T3) of rice bran on the pathogenesis of atherosclerotic lesions in C57BL/6 apolipoprotein (apo)E-deficient (-/-) mice. These mice are an excellent model because they become hyperlipidemic even when they consume a low fat diet and they develop complex atherosclerotic lesions similar to those of humans. These compounds were also tested in wild-type C57BL/6 apoE (+/+) and (+/-) mice fed low or high fat diets. When a high fat diet was supplemented with alpha-tocopherol, TRF(25) or d-P(25)-T3 and fed to mice (+/+) for 24 wk, atherosclerotic lesion size was reduced 23% (P = 0.33), 36% (P = 0.14) and 57% (P < 0.02), respectively, and in mice (+/-) fed for 18 wk, lesions were reduced by 19% (P = 0.15), 28% (P < 0.01) and 33% (P < 0.005), respectively, compared with mice fed a control diet. A low fat diet did not cause atherosclerotic lesions in these mice. The low fat diet supplemented with TRF(25) or d-P(25)-T3 fed to apoE-deficient (-/-) mice for 14 wk decreased atherosclerotic lesion size by 42% (P < 0.04) and 47% (P < 0.01), respectively, whereas alpha-tocopherol supplementation resulted in only an 11% (P = 0.62) reduction. These results demonstrate the superior efficacy of tocotrienols compared with alpha-tocopherol. Althoughtocotrienols decreased serum triglycerides, total and LDL cholesterol levels, the decreases in atherosclerotic lesions seem to be due to the other activities. Serum tocol concentrations in various groups are also described. This is the first report of a significant reduction in the atherosclerotic lesion size in all three genotypes of apoE mice fed a novel tocotrienol (d-P(25)-T3) of rice bran. Dietary tocotrienol supplements may provide a unique approach to promoting cardiovascular health.

Read Full Article Here

The balance between the vitamin E (tocochromanols) and polyunsaturated fatty acid (PUFA) contents mainly determines the susceptibility to lipid peroxidation and the storage stability of corn oil. In 1997, field experiments were conducted at two different locations to evaluate a collection of 30 corn hybrids for fatty acid profiles and tocochromanol contents. Hybrids differed significantly (p < 0.01) for major fatty acids, as well as for tocochromanol contents and composition. The major fatty acids were palmitic, oleic, and linoleic acids, whose contents were in the ranges 9.2-12.1%, 19.5-30.5%, and 53.0-65.3%, respectively. The tocopherol contents ranged as follows: alpha-tocopherol, 67-276 mg (kg of oil)(-1); beta-tocopherol, 0-20 mg (kg of oil)(-1); gamma-tocopherol, 583-1048 mg (kg of oil)(-1); delta-tocopherol, 12-71 mg (kg of oil)(-1); total tocopherol, 767-1344 mg (kg of oil)(-1). gamma-Tocopherol was the predominant derivative among all tocopherols. The tocotrienol contents were in the ranges 46-89, 53-164, and 99-230 mg (kg of oil)(-1) for alpha-, gamma-, and total tocotrienol contents, respectively. The tocotrienol profile was not characterized by the predominance of any tocotrienol homologue. alpha-Tocopherol was positively correlated with PUFA (r = 0.41) and with the vitamin E equivalent (vit E equiv) (r = 0.84), and it was not correlated with gamma-tocopherol. gamma-Tocopherol was highly correlated with total tocopherol and tocochromanol contents (r = 0.93 and r = 0.90, respectively), indicating that the contribution of this vitamer to the total tocochromanol content is the most important among all tocochromanols. The high positive correlation found between the vit E/PUFA ratio and the vit E equiv, as well as the absence of correlation between this ratio and PUFA indicates that a higher vit E/PUFA ratio can be easier achieved be increasing the vitamin E content than by modifying fatty acid profile in corn oil.