Synthesis and study of the cancer cell growth inhibitory properties of alpha-, gamma-tocopheryl and gamma-tocotrienyl 2-phenylselenyl succinates

Vraka PS, Drouza C, Rikkou MP, Odysseos AD, Keramidas AD.

Bioorg Med Chem. 2006 Apr 15;14(8):2684-96. Epub 2005 Dec 27.

Vitamin E succinate selenium-conjugated molecules were synthesized and their apoptogenic properties were evaluated. 4-Methyl-2-phenylselenyl succinate (4) was prepared by the reaction of sodium benzeneselenolate with 2-bromosuccinic anhydrite in methanol solution. The methyl ester was converted to the acid (5) by hydrolysis with aqueous hydrochloric acid. Reaction of the 2-phenylselenyl succinic anhydrite (6) with alpha-tocopherol (1a), gamma-tocopherol (1c), and gamma-tocotrienol (2c) in acidic conditions gave the respective esters. The free radical scavenging properties of alpha-tocopheryl-2-phenylselenyl succinate (7), gamma-tocopheryl-2-phenylselenyl succinate (8), and gamma-tocotrienyl-2-phenylselenyl succinate (9) were evaluated in comparison with those of alpha-tocopheryl succinate (10), gamma-tocopheryl succinate (11), and gamma-tocotrienyl succinate (12), respectively, and the free tocopherols and gamma-tocotrienol. Compounds 7-9 induced a statistically significant decrease in prostate cancer cell viability compared to 10-12, respectively, or 5, exhibiting features of apoptotic cell death and associated with caspase-3 activation. These data show that structural modifications of vitamin E components by 5 enhance their apoptogenic properties in cancer cells.

Comparative effects of alpha-tocopherol and gamma-tocotrienol against hydrogen peroxide induced apoptosis on primary-cultured astrocytes

Mazlan M, Sue Mian T, Mat Top G, Zurinah Wan Ngah W.

J Neurol Sci. 2006 Apr 15;243(1-2):5-12.

Oxidative stress is thought to be one of the factors that cause neurodegeneration and that this can be inhibited by antioxidants. Since astrocytes support the survival of central nervous system (CNS) neurons, we compared the effect of alpha-tocopherol and gamma-tocotrienol in minimizing the cytotoxic damage induced by H2O2, a pro-oxidant. Primary astrocyte cultures were pretreated with either alpha-tocopherol or gamma-tocotrienol for 1 h before incubation with 100 microM H2O2 for 24 h. Cell viability was then assessed using the MTS assay while apoptosis was determined using a commercial ELISA kit as well as by fluorescent staining of live and apoptotic cells. The uptake of alpha-tocopherol and gamma-tocotrienol by astrocytes were also determined using HPLC. Results showed that gamma-tocotrienol is toxic at concentrations >200 microM but protects against H2O2 induced cell loss and apoptosis in a dose dependent manner up to 100 microM. alpha-Tocopherol was not cytotoxic in the concentration range tested (up to 750 microM), reduced apoptosis to the same degree as that of gamma-tocotrienol but was less effective in maintaining the viable cell number. Since the uptake of alpha-tocopherol and gamma-tocotrienol by astrocytes is similar, this may reflect the roles of these 2 vitamin E subfamilies in inhibiting apoptosis and stimulating proliferation in astrocytes.