BACKGROUND: The detection of tocotrienols in human plasma has proven elusive, and it is hypothesized that they are rapidly assimilated and redistributed in various mammalian tissues.

OBJECTIVE: The primary study objective was to evaluate the postprandial fate of tocotrienols and alpha-tocopherol in human plasma and lipoproteins.

DESIGN: Seven healthy volunteers (4 males, 3 females) were administered a single dose of vitamin E [1011 mg palm tocotrienol-rich fraction (TRF) or 1074 mg alpha-tocopherol] after a 7-d conditioning period with a tocotrienol-free diet. Blood was sampled at baseline (fasted) and 2, 4, 5, 6, 8, and 24 h after supplementation. Concentrations of tocopherol and tocotrienol isomers in plasma, triacylglycerol-rich particles (TRPs), LDLs, and HDLs were measured at each interval.

RESULTS: After intervention with TRF, plasma tocotrienols peaked at 4 h (4.79 +/- 1.2 microg/mL), whereas alpha-tocopherol peaked at 6 h (13.46 +/- 1.68 microg/mL). Although tocotrienols were similarly detected in TRPs, LDLs, and HDLs, tocotrienol concentrations were significantly lower than alpha-tocopherol concentrations. In comparison, plasma alpha-tocopherol peaked at 8 h (24.3 +/- 5.22 microg/mL) during the alpha-tocopherol treatment and emerged as the major vitamin E isomer detected in plasma and lipoproteins during both the TRF and the alpha-tocopherol treatments.

CONCLUSIONS: Tocotrienols are detected in postprandial plasma, albeit in significantly lower concentrations than is alpha-tocopherol. This finding confirms previous observations that, in the fasted state, tocotrienols are not detected in plasma. Tocotrienol transport in lipoproteins appears to follow complex biochemically mediated pathways within the lipoprotein cascade.

We previously reported that heat pretreatment of corn fiber (150 degrees C, 1 h) caused a tenfold increase in the levels of extractable gamma-tocopherol. The current study was a reinvestigation of the previous effect, using improved methods (HPLC with fluorescence detection, diode-array UV detection, and mass spectrometry) for tocol analysis. Heat pretreatment did not cause an increase in the levels of any of the tocopherols or tocotrienols in corn fiber oil, but lowered the levels of three of the tocols and had no effect on the levels of the other two tocols. Heat pretreatment of corn germ had a similar effect. UV and mass spectra indicated that the peak that we had identified as gamma-tocopherol in our previous report was probably a mixture of oxidation products of triacylglycerols. Thus, heat treatment of corn germ or other corn-oil containing fractions at high temperatures leads to decreases in gamma-tocopherol, gamma-tocotrienol, and delta-tocotrienol and to the production of triacylglycerol oxidation products.

 

Apoptosis induction by gamma-tocotrienol in human hepatoma Hep3B cells

Sakai M, Okabe M, Tachibana H, Yamada K.

J Nutr Biochem. 2006 Oct;17(10):672-6.

We evaluated the antitumor activity of tocotrienol (T3) on human hepatoma Hep3B cells. At first, we examined the effect of T3 on the proliferation of human hepatoma Hep3B cells and found that gamma-T3 inhibited cell proliferation at lower concentrations and shorter treatment times than alpha-T3. Then, we examined the effect of gamma-T3 apoptosis induction and found that gamma-T3 induced poly (ADP-ribose) polymerase (PARP) cleavage and stimulated a rise in caspase-3 activity. In addition, gamma-T3 stimulated a rise in caspase-8 and caspase-9 activities. We also found that gamma-T3-induced apoptotic cell death was accompanied by up-regulation of Bax and a rise in the fragments of Bid and caspase-8. These data indicate that gamma-T3 induced apoptosis in Hep3B cells and that caspase-8 and caspase-9 were involved in apoptosis induction. Moreover, these results suggest that Bax and Bid regulated apoptosis induction by gamma-T3.