Abstract
Tocotrienols accelerate the degradation of 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase that catalyzes the biosynthesis of mevalonate; the latter is essential for preadipocyte differentiation. Tocotrienols also down-regulate peroxisome proliferator-activated receptor γ (PPARγ), a key regulator of adipocyte differentiation. We hypothesized that mevalonate deprivation and PPARγ down-regulation mediate d-δ-tocotrienol-induced inhibition of adipocyte differentiation. The objectives of this study were to determine the effect of d-δ-tocotrienol on 3T3-F442A preadipocyte differentiation and the involvement of PPARγ and mevalonate. Murine 3T3-F442A preadipocytes were incubated with d-δ-tocotrienol (2.5-10 μmol/L) for 8 days. AdipoRed assay and Oil Red O staining showed that d-δ-tocotrienol dose-dependently reduced the intracellular triglyceride content. Concomitantly, d-δ-tocotrienol dose-dependently inhibited glucose uptake by 3T3-F442A cells and the expression of GLUT4, HMG CoA reductase, and p-Akt proteins. The effects of d-δ-tocotrienol on intracellular triglyceride content and glucose uptake were attenuated by rosiglitazone, an agonist of PPARγ, but not supplemental mevalonate (100 μmol/L). In contrast, mevalonate, but not rosiglitazone, reversed the effects of lovastatin, a competitive inhibitor of HMG CoA reductase shown to inhibit adipocyte differentiation via mevalonate deprivation. Trypan blue staining revealed no changes in cell viability after a 48-hour incubation of 3T3-F442A cells with d-δ-tocotrienol (0-80 μmol/L), suggesting that the adipogenesis-suppressive activity of d-δ-tocotrienol was independent of cytotoxicity. In conclusion, these findings demonstrate the antiadipogenic effect of d-δ-tocotrienol via PPARγ down-regulation.
Read More