Effect of palm-based tocotrienols and tocopherol mixture supplementation on platelet aggregation in subjects with metabolic syndrome: a randomised controlled trial.

Gan YL, Fu JY, Lai OM, Chew BH, Yuen KH, Teng KT, Nesaretnam K, Selvaduray KR, Meganathan P

Sci Rep. 2017 Sep 14;7(1):11542. doi: 10.1038/s41598-017-11813-w.

Abstract

Tocotrienols, the unsaturated form of vitamin E, were reported to modulate platelet aggregation and thrombotic mechanisms in pre-clinical studies. Using a Food and Drug Administration (FDA)-approved cartridge-based measurement system, a randomised, double-blind, crossover and placebo-controlled trial involving 32 metabolic syndrome adults was conducted to investigate the effect of palm-based tocotrienols and tocopherol (PTT) mixture supplementation on platelet aggregation reactivity. The participants were supplemented with 200 mg (69% tocotrienols and 31% α-tocopherol) twice daily of PTT mixture or placebo capsules for 14 days in a random order. After 14 days, each intervention was accompanied by a postprandial study, in which participants consumed 200 mg PTT mixture or placebo capsule after a meal. Blood samples were collected on day 0, day 14 and during postprandial for the measurement of platelet aggregation reactivity. Subjects went through a 15-day washout period before commencement of subsequent intervention. Fasting platelet aggregation reactivity stimulated with adenosine diphosphate (ADP) did not show substantial changes after supplementation with PTT mixture compared to placebo (p = 0.393). Concomitantly, changes in postprandial platelet aggregation reactivity remained similar between PTT mixture and placebo interventions (p = 0.408). The results of this study highlight the lack of inhibitory effect on platelet aggregation after short-term supplementation of PTT mixture in participants with metabolic syndrome.

Read More

This little-known vitamin may lower your stroke risk – The STAR

Numerous studies show that a little-known type of vitamin E called tocotrienols can protect the brain against stroke damage and reduce the risk of recurrent stroke. According to tocotrienol researcher Prof Chandan K. Sen, brain damage during a stroke can be prevented by triggering the surrounding blood vessels to dilate and redirect the blood flow around a blockage. The blood vessel “redirect” is the result of 10 weeks worth of supplementation with palm tocotrienols in a canine-stroke model study.

Read More

The Ameliorative Effects of a Tocotrienol-Rich Fraction on the AGE-RAGE Axis and Hypertension in High-Fat-Diet-Fed Rats with Metabolic Syndrome.

Cheng HS, Ton SH, Tan JBL, Abdul Kadir K

Nutrients. 2017 Sep 7;9(9). pii: E984. doi: 10.3390/nu9090984.

Abstract

The clinical value of tocotrienols is increasingly appreciated because of the unique therapeutic effects that are not shared by tocopherols. However, their effect on metabolic syndrome is not well-established. This study aimed to investigate the effects of a tocotrienol-rich fraction (TRF) from palm oil in high-fat-diet-treated rats. Male, post-weaning Sprague Dawley rats were provided high-fat (60% kcal) diet for eight weeks followed by a TRF (60 mg/kg) treatment for another four weeks. Physical, metabolic, and histological changes were compared to those on control and high-fat diets respectively. High-fat feeding for eight weeks induced all hallmarks of metabolic syndrome. The TRF reversed systolic and diastolic hypertension, hypercholesterolemia, hepatic steatosis, impaired antioxidant defense, and myeloperoxidase hyperactivity triggered by the high-fat diet. It also conferred an inhibitory effect on protein glycation to reduce glycated hemoglobin A1c and advanced glycation end products (AGE). This was accompanied by the suppression of the receptor for advanced glycation end product (RAGE) expression in the liver. The treatment effects on visceral adiposity, glycemic control, triglyceride level, as well as peroxisome proliferator-activated receptor α and γ expression were negligible. To conclude, treatment with a TRF exhibited protective effects on the cardiovascular and liver health in addition to the amelioration of plasma redox imbalance and AGE-RAGE activation. Further investigation as a therapy for metabolic syndrome is therefore worthwhile.

Read More

Vitamin E isoform γ-tocotrienol protects against emphysema in cigarette smoke-induced COPD.

Peh HY, Tan WSD, Chan TK, Pow CW, Foster PS, Wong WSF.

Free Radic Biol Med. 2017 Sep;110:332-344. doi: 10.1016/j.freeradbiomed.2017.06.023. Epub 2017 Jul 3.

Abstract

Inflammation and oxidative stress contribute to emphysema in COPD. Although corticosteroids are the standard of care for COPD, they do not reduce oxidative stress, and a subset of patients is steroid-resistant. Vitamin E isoform γ-tocotrienol possesses both anti-inflammatory and anti-oxidative properties that may protect against emphysema. We aimed to establish the therapeutic potential of γ-tocotrienol in cigarette smoke-induced COPD models in comparison with prednisolone. BALB/c mice were exposed to cigarette smoke for 2 weeks or 2 months. γ-Tocotrienol and prednisolone were given orally. Bronchoalveolar lavage (BAL) fluid and lung tissues were assessed for inflammation, oxidative damage, and regulation of transcription factor activities. Emphysema and lung function were also evaluated. γ-Tocotrienol dose-dependently reduced cigarette smoke-induced BAL fluid neutrophil counts and levels of cytokines, chemokines and oxidative damage biomarkers, and pulmonary pro-inflammatory and pro-oxidant gene expression, but restored lung endogenous antioxidant activities. γ-Tocotrienol acted by inhibiting nuclear translocation of STAT3 and NF-κB, and up-regulating Nrf2 activation in the lungs. In mice exposed to 2-month cigarette smoke, γ-tocotrienol ameliorated bronchial epithelium thickening and destruction of alveolar sacs in lungs, and improved lung functions. In comparison with prednisolone, γ-tocotrienol demonstrated better anti-oxidative efficacy, and protection against emphysema and lung function in COPD. We revealed for the first time the anti-inflammatory and antioxidant efficacies of γ-tocotrienol in cigarette smoke-induced COPD models. In addition, γ-tocotrienol was able to attenuate emphysematous lesions and improve lung function in COPD. γ-Tocotrienol may have therapeutic potential for the treatment of COPD.

Read More