Vitamin E inhibits the UVAI induction of “light” and “dark” cyclobutane pyrimidine dimers, and oxidatively generated DNA damage, in keratinocytes

Delinasios GJ, Karbaschi M, Cooke MS, Young AR

Sci Rep. 2018 Jan 11;8(1):423. doi: 10.1038/s41598-017-18924-4.

Abstract

Solar ultraviolet radiation (UVR)-induced DNA damage has acute, and long-term adverse effects in the skin. This damage arises directly by absorption of UVR, and indirectly via photosensitization reactions. The aim of the present study was to assess the effects of vitamin E on UVAI-induced DNA damage in keratinocytes in vitro. Incubation with vitamin E before UVAI exposure decreased the formation of oxidized purines (with a decrease in intracellular oxidizing species), and cyclobutane pyrimidine dimers (CPD). A possible sunscreening effect was excluded when similar results were obtained following vitamin E addition after UVAI exposure. Our data showed that DNA damage by UVA-induced photosensitization reactions can be inhibited by the introduction of vitamin E either pre- or post-irradiation, for both oxidized purines and CPD (including so-called “dark” CPDs). These data validate the evidence that some CPD are induced by UVAI initially via photosensitization, and some via chemoexcitation, and support the evidence that vitamin E can intervene in this pathway to prevent CPD formation in keratinocytes. We propose the inclusion of similar agents into topical sunscreens and aftersun preparations which, for the latter in particular, represents a means to mitigate on-going DNA damage formation, even after sun exposure has ended.

Read More

Ischemia-Reperfusion Injury of Sciatic Nerve in Rats: Protective Role of Combination of Vitamin C with E and Tissue Plasminogen Activator

Apostolopoulou K, Konstantinou D, Alataki R, Papapostolou I, Zisimopoulos D, Kalaitzopoulou E, Bravou V, Lilis I, Angelatou F, Papadaki H, Georgiou CD, Chroni E

Neurochem Res. 2018 Jan 11. doi: 10.1007/s11064-017-2465-8. [Epub ahead of print]

Abstract

An ischemia/reperfusion injury of rat’s sciatic nerve was experimentally developed. In this model, we measured the in vivo production of superoxide radical, as a marker of oxidative stress and the occludin expression as an indicator of blood-nerve barrier function and we examined potential protective innervations against these abnormalities. Right sciatic nerves of the animals underwent 3 h of ischemia followed by 7 days of reperfusion and were divided into three groups: ischemic, pretreated with vitamin C in conjunction with vitamin E and treated with tissue plasminogen activator. Compared to measurements from left sciatic nerves used as sham, the ischemic group showed significantly increased superoxide radical and reduced expression of occludin in western blot and immunohistochemistry. No such differences were detected between sham and nerves in the vitamin or tissue plasminogen activator groups. It is suggested that the experimental ischemia/reperfusion model was suitable for studying the relationship between oxidative state and blood-nerve barrier. The reversion of abnormalities by the applied neuroprotective agents might prove to be a clinically important finding in view of the implication of vascular supply derangement in various neuropathies in humans.

Read More

The use of 99mTc-phytate for assessment the protective effect of vitamin E against hepatotoxicity induced by methotrexat in rat

Amirfakhrian H, Abedi SM, Sadeghi H, Azizi S, Hosseinimehr SJ

Nucl Med Rev Cent East Eur. 2018 Jan 10. doi: 10.5603/NMR.a2018.0006. [Epub ahead of print]

Abstract

In this study, we investigated the protective effect of vitamin E against methotrexate (MTX)-induced hepatotoxicity by quantitative liver 99mTc-phytate uptake and liver imaging and to compare its effect with histopathology in rat. Rats were divided into five groups as control, solvent, Vit E (100 mg/kg), MTX (20 mg/kg), Vit E + MTX and. Vit E was intraperitoneally administrated for 17 days before MTX injection and continued for 4 days. 99mTc-phytate was injected through the tail of rats after the drug administration. The percentage of the injected dose per gram of liver and spleen tissues (%ID/g) was calculated. Liver imaging was obtained with gamma camera. In other experiment, liver of treated rats were assessed for histopathology. 99mTc-phytate uptake per gram tissue of the livers as %ID/g in control, solvent, MTX, Vit E, Vit E + MTX and MTX groups were 8.99%  1.37, 8.53%  2.91, 8.65%  3.84, 3.22%  1.09 and 8.38%  2.68. Vit E administration with MTX resulted in a significant increasing in the level of %ID/g. Vit E treatment improved the shape of live in planner image. Histophatological examinations showed a protective effect of Vit E against MTX-induced hepatoxicity in rats. The results showed that Vit E significantly attenuates the MTX-induced hepatotoxicity in rats, and 99mTc-phytate uptake in liver as well as liver image to be acceptable techniques for assessment of liver and spleen damages and/or their tissues protective effects in animal model.

Read More

Health Benefits of Vitamin E

Vitamin E, a fat-soluble antioxidant, can only be obtained as a food supplement, but has widely-known health benefits for the skin, heart and brain. Deficiency of vitamin E is rarely naturally-occurring, but when it does appear, it is typically caused by fat malabsorption disorders or genetic abnormalities. Vitamin E is well-known in the cosmetic world for its skin benefits, but also protects against toxins that can deteriorate the eyes and brain.

Read More

Vitamin transporters in mice brain with aging

Marcos P, González-Fuentes J, Castro-Vázquez L, Lozano MV, Santander-Ortega MJ, Rodríguez-Robledo V, Villaseca-González N, Arroyo-Jiménez MM

J Anat. 2018 Jan 8. doi: 10.1111/joa.12769. [Epub ahead of print]

Abstract

Its high metabolic rate and high polyunsaturated fatty acid content make the brain very sensitive to oxidative damage. In the brain, neuronal metabolism occurs at a very high rate and generates considerable amounts of reactive oxygen species and free radicals, which accumulate inside neurons, leading to altered cellular homeostasis and integrity and eventually irreversible damage and cell death. A misbalance in redox metabolism and the subsequent neurodegeneration increase throughout the course of normal aging, leading to several age-related changes in learning and memory as well as motor functions. The neuroprotective function of antioxidants is crucial to maintain good brain homeostasis and adequate neuronal functions. Vitamins E and C are two important antioxidants that are taken up by brain cells via the specific carriers αTTP and SVCT2, respectively. The aim of this study was to use immunohistochemistry to determine the distribution pattern of these vitamin transporters in the brain in a mouse model that shows fewer signs of brain aging and a higher resistance to oxidative damage. Both carriers were distributed widely throughout the entire brain in a pattern that remained similar in 4-, 12-, 18- and 24-month-old mice. In general, αTTP and SVCT2 were located in the same regions, but they seemed to have complementary distribution patterns. Double-labeled cell bodies were detected only in the inferior colliculus, entorhinal cortex, dorsal subiculum, and several cortical areas. In addition, the presence of αTTP and SVCT2 in neurons was analyzed using double immunohistochemistry for NeuN and the results showed that αTTP but not SVCT2 was present in Bergmann’s glia. The presence of these transporters in brain regions implicated in learning, memory and motor control provides an anatomical basis that may explain the higher resistance of this animal model to brain oxidative stress, which is associated with better motor performance and learning abilities in old age.

Read More

Annatto: Delivering Tocotrienols from Amazonia

Today, annatto is known to be one of the superior sources of tocotrienols, whose researched health benefits mirror some of those passed down from ancient traditions. Unique among the plant kingdom, annatto produces only tocotrienols, whereas all other known sources of this vitamin E nutrient, such as palm and rice, deliver mixtures of tocopherols and tocotrienols, typically containing anywhere from 25-50% alpha-tocopherol. This is one ancient secret steeped into an Amazonian past.

Read More

Her son’s eczema inspired her to create an anti-inflammatory moisturising cream

Welcoming your first child is a time of great joy, but also a time of great anxiety. Worries about whether you’re feeding him right, carrying her correctly, bathing him properly and interpreting her heart-rending cries accurately, are common emotional companions for first-time parents. So, it’s hard enough coping with a healthy baby, but what if he or she also has a health problem?

Universiti Putra Malaysia (UPM) Department of Bioprocess Technology professor Dr Lai Oi Ming had her first, and only, child in 2013. But her joy in welcoming her firstborn was marred by his unexpected skin condition.

Read More

Vitamin E (α‑tocopherol) ameliorates aristolochic acid‑induced renal tubular epithelial cell death by attenuating oxidative stress and caspase‑3 activation.

Wu TK, Pan YR, Wang HF, Wei CW, Yu YL

Mol Med Rep. 2018 Jan;17(1):31-36. doi: 10.3892/mmr.2017.7921. Epub 2017 Oct 27.

Abstract

Aristolochic acid (AA) is a component identified in traditional Chinese remedies for the treatment of arthritic pain, coughs and gastrointestinal symptoms. However, previous studies have indicated that AA can induce oxidative stress in renal cells leading to nephropathy. α‑tocopherol exists in numerous types of food, such as nuts, and belongs to the vitamin E isoform family. It possesses antioxidant activities and has been used previously for clinical applications. Therefore, the aim of the present study was to determine whether α‑tocopherol could reduce AA‑induced oxidative stress and renal cell cytotoxicity, determined by cell survival rate, reactive oxygen species detection and apoptotic features. The results indicated that AA markedly induced H2O2 levels and caspase‑3 activity in renal tubular epithelial cells. Notably, the presence of α‑tocopherol inhibited AA‑induced H2O2 and caspase‑3 activity. The present study demonstrated that antioxidant mechanisms of α‑tocopherol may be involved in the increased survival rates from AA‑induced cell injury.

Read More

Vitamin E can improve behavioral tests impairment, cell loss, and dendrite changes in rats’ medial prefrontal cortex induced by acceptable daily dose of aspartame.

Rafati A, Noorafshan A, Jahangir M, Hosseini L, Karbalay-Doust S

Acta Histochem. 2018 Jan;120(1):46-55. doi: 10.1016/j.acthis.2017.11.004. Epub 2017 Nov 21.

Abstract

Aspartame is an artificial sweetener used in about 6000 sugar-free products. Aspartame consumption could be associated with various neurological disorders. This study aimed to evaluate the effect of aspartame onmedial Prefrontal Cortex (mPFC) as well as neuroprotective effects of vitamin E. The rats were divided into seven groups, including distilled water, corn oil, vitamin E (100mg/kg/day), and low (acceptable daily dose) and high doses of aspartame (40 and 200mg/kg/day) respectively, with or without vitamin E consumption, for 8 weeks. Behavioral tests were recorded and the brain was prepared for stereological assessments. Novel objects test and eight-arm radial maze showed impairmentoflong- and short-termmemoriesin aspartame groups. Besides, mPFC volume, infralimbic volume, neurons number, glial cells number, dendrites length per neuron,and number of spines per dendrite length were decreased by 7-61% in the rats treated with aspartame. However, neurons’ number, glial cells number, and rats’ performance in eight-arm radial mazes were improved by concomitant consumption of vitamin E and aspartame. Yet, the mPFC volume and infralimbic cortex were protected only in the rats receiving the low dose of aspartame+vitamin E. On the other hand, dendrites length, spines number,and novel object recognition were not protected by treatment with vitamin E+aspartame. The acceptable daily dose or higher doses of aspartame could induce memory impairments and cortical cells loss in mPFC. However, vitamin E could ameliorate some of these changes.

Read More

The possible protective effects of vitamin E and selenium administration in oxidative stress caused by high doses of glucocorticoid administration in the brain of rats.

Beytut E, Yilmaz S, Aksakal M, Polat S

J Trace Elem Med Biol. 2018 Jan;45:131-135. doi: 10.1016/j.jtemb.2017.10.005. Epub 2017 Oct 16.

Abstract

Acute exposure to high doses of glucocorticoids (GCs) may potentially increase the basal levels of reactive oxygen species (ROS) by altering the defence capacity against oxidative damage. Also, antioxidants may affect the oxidative breakdown of tissues. Therefore, the aim of this work was to determine the effects of dietary intake vitamin E and selenium (Se) on lipid peroxidation (LPO) as thiobarbituric acid reactive substances (TBARS) and on the antioxidative defence mechanisms in the brain of rats treated with high doses of prednisolone. Two hundred and fifty adult male Wistar rats were randomly divided into five groups. The rats were fed a normal diet, but groups 3, 4, and 5 received a daily supplement in their drinking water of 20mg vitamin E, 0.3mg Se, and a combination of vitamin E and Se, respectively, for 30days. For 3days subsequently, the control (group 1) was treated with a placebo, and the remaining 4 groups were injected intramuscularly with 100mg/kg body weight (bw) prednisolone. After the last administration of prednisolone, 10 rats from each group were killed at 4, 8, 12, 24, and 48h and the activities of enzymes selenium-glutathione peroxidase (Se-GSH-Px) and catalase (CAT), and the levels of reduced glutathione (reduced GSH) and TBARS in their brains were measured. Se-GSH-Px and CAT enzyme activities, and reduced GSH levels in the prednisolone treatment group (group 2) began to decrease gradually at 4h (p<0.01, p<0.05, respectively), falling respectively to 60, 50, and 40% of the control levels by 24h (p<0.001, p<0.01), and recovering to the control levels at 48h. In contrast, prednisolone administration caused an increase in the brain TBARS, reaching up to six times the level of the control at 24h (p<0.001). However, supplementation with vitamin E and Se had a preventive effect on the elevation of the brain TBARS and improved the diminished activities of antioxidative enzymes and the levels of reduced GSH. Therefore, the present study attempts to determine the sequence of cellular membrane damage in the brain of the rats after high doses GC administration and the possible roles in vivo of vitamin E and Se, and their combination.

Read More