Tocotrienols, a form of vitamin E derived from annatto, have been linked to less bone loss among diabetic rodents in two different studies published this summer.

Tocotrienols, a form of vitamin E derived from annatto, have been linked to less bone loss among diabetic rodents in two different studies published this summer.

This study aimed to evaluate the effect of dietary ochratoxin A (OA), in the presence and absence of L-carnitine (LC) and vitamin E (VE), on the humoral immune responses of White Leghorn cockerels (WLC). One-day old white male Leghorn chicks were divided into 12 groups, having 20 birds each and were offered ration contaminated with OA (1.0 or 2.0 mg/kg feed) alone and concurrently with LC (1.0 g/kg) and/or VE (0.2 g/kg), for 42 days. The humoral immune responses were accessed by lymphoproliferative response to avian tuberculin, in-vivo phagosomes activity to carbon particles and antibody response to the sheep red blood cells (SRBCs). The dietary addition of OA alone suppressed the humoral immune responses, however, the exposure of birds to 1.0 mg/kg OA in the presence of LC and/or VE showed a significant reduction in OA induced immunotoxicity. This protective response was absent in the birds fed 2.0 mg/kg OA in the presence and absence of LC and/or VE. Histopathological and morphometric examination of the bursa of Fabricius exhibited a decrease in the severity and frequency of OA induced lesions in the presence of dietary LC and/or VE. The use of LC and VE as dietary supplement, can effectively overcome OA (≤1.0 mg/kg) induced immunosuppression.
Vitamin E is one of the vitamins that isn’t talked about much but it has amazing benefits for the hair and skin, but do you know it can also be beneficial for your body? Here are some ways vitamin E can be beneficial for your heart, brain, and more other organs in your body.

Annatto tocotrienol targets bone loss associated with metabolic syndrome, as shown by two independent studies. Both studies, conducted by separate groups and recently published in Scientific Reports and Bone, respectively, showed that annatto tocotrienol was beneficial for management of metabolic syndrome parameters and had osteo-protective effects.
Read More
Recently, a new assay method that can quantify the singlet oxygen-absorption capacity (SOAC) of antioxidants (AO) and food extracts in homogeneous organic solvents has been proposed. In the present study, second-order rate constants (kQ ) for the reaction of singlet oxygen (1 O2 ) with vitamin E homologs (α-, β-, γ-, and δ-tocopherols [Toc] and α-, β-, γ-, and δ-tocotrienols [Toc-3]) were measured in an aqueous Triton X-100 (5.0 wt%) micellar solution (pH 7.4). Toc-3 showed kQ values larger than those of Toc in a micellar solution, although Toc and Toc-3 showed the same kQ values in a homogeneous solution. Similar measurements were performed for 5 palm oil extracts 1-5 and one soybean extract 6, which contained different concentrations of Toc, Toc-3, and carotenoids. It has been clarified that the 1 O2 -quenching rates (kQ ) (that is, the relative SOAC value) obtained for extracts 3-6 may be explained as the sum of the product ΣkQAO-iAO-i/100 of the rate constant (kQAO-i) and the concentration ([AO-i]/100) of AO-i contained. The UV-vis absorption spectra of Toc and Toc-3 were measured in a micellar solution and chloroform. The results obtained demonstrated that the kQ values of AO in homogeneous and heterogeneous solutions vary notably depending on (1) polarity (dielectric constant [ε]) of the reaction field between 1 O2 and AO, (2) the local concentration of AO, and (3) the mobility of AO in solution. The results suggest that the SOAC method is applicable to the measurement of 1 O2 -quenching activity of general food extracts in a heterogeneous micellar solution.
Cytoplasmic DNA triggers cellular immunity via activating the stimulator of interferon genes pathway. Since DNA is degradable and membrane impermeable, delivery system would permit cytoplasmic delivery by destabilizing the endosomal membrane for the use as an adjuvant. Herein, we report on the development of a plasmid DNA (pDNA)-encapsulating lipid nanoparticle (LNP). The structural components include an SS-cleavable and pH-activated lipid-like material that mounts vitamin E as a hydrophobic scaffold, and dual sensing motifs that are responsive to the intracellular environment (ssPalmE). The pDNA-encapsulating LNP (ssPalmE-LNP) induced a high interferon-β production in Raw 264.7 cells. The subcutaneous injection of ssPalmE-LNP strongly enhanced antigen-specific cytotoxic T cell activity. The ssPalmE-LNP treatment efficiently induced antitumor effects against E.G7-OVA tumor and B16-F10 melanoma metastasis. Furthermore, when combined with an anti-programmed death 1 antibody, an extensive therapeutic antitumor effect was observed. Therefore, the ssPalmE-LNP is a promising carrier of adjuvants for cancer immunotherapy.
Inflammation plays a major role in the onset and development of chronic non-communicable diseases like obesity, cardiovascular diseases and cancer. Combined, these diseases represent the most common causes of death worldwide, thus development of novel pharmacological approaches is crucial. Electrophilic nitroalkenes derived from fatty acids are formed endogenously and exert anti-inflammatory actions by the modification of proteins involved in inflammation signaling cascades. We have developed novel nitroalkenes derived from α-tocopherolaiming to increase its salutary actions by adding anti-inflammatory properties to a well-known nutraceutical. We synthesized and characterized an α-tocopherol-nitroalkene (NATOH) and two hydrosoluble analogues derived from Trolox (NATxME and NATx0). We analyzed the kinetics of the Michael addition reaction of these compounds with thiols in micellar systems aiming to understand the effect of hydrophobic partition on the reactivity of nitroalkenes. We studied NATxME in vitro showing it exerts non-conventional anti-inflammatory responses by inducing Nrf2-Keap1-dependent gene expression and inhibiting the secretion of NF-κB dependent pro-inflammatory cytokines. NATxME was also effective in vivo, inhibiting neutrophil recruitment in a zebrafish model of inflammation. This work lays the foundation for the rational design of a new therapeutic strategy for the prevention and treatment of metabolic and inflammation-related diseases.
The beneficial effects of vitamin E in improving components of MetS or bone loss have been established. This study aimed to investigate the potential of palm vitamin E (PVE) as a single agent, targeting MetS and bone loss concurrently, using a MetS animal model. Twelve-week-old male Wistar rats were divided into five groups. The baseline group was sacrificed upon arrival. The normal group was given standard rat chow. The remaining three groups were fed with high-carbohydrate high-fat (HCHF) diet and treated with tocopherol-stripped corn oil (vehicle), 60 mg/kg or 100 mg/kg PVE. At the end of the study, the rats were evaluated for MetS parameters and bone density. After euthanasia, blood and femurs were harvested for the evaluation of lipid profile, bone histomorphometric analysis, and remodeling markers. PVE improved blood pressure, glycemic status, and lipid profile; increased osteoblast surface, osteoid surface, bone volume, and trabecular thickness, as well as decreased eroded surface and single-labeled surface. Administration of PVE also significantly reduced leptin level in the HCHF rats. PVE is a potential agent in concurrently preventing MetS and protecting bone loss. This may be, in part, achieved by reducing the leptin level and modulating the bone remodeling activity in male rats.
Vitamin E is a fat-soluble nutrient that is available from several food sources as well as in supplement form. Some people believe that vitamin E has a positive impact on hair health, although more research is necessary to support this theory.