Vitamin E: How much is enough, too much and why!

Maret G Traber, Brian Head

Free Radic Biol Med . 2021 Oct 23;177:212-225. doi: 10.1016/j.freeradbiomed.2021.10.028. Online ahead of print.

Abstract

α-Tocopherol (α-T) is a required dietary nutrient for humans and thus is a vitamin. This narrative review focuses on vitamin E structures, functions, biological determinants and its deficiency symptoms in humans. The mechanisms for the preferential α-T tissue enrichment in the human body include the α-T transfer protein (TTPA) and the preferential metabolism of non-α-T forms. Potential new α-T biomarkers, pharmacokinetic data, and whether there are better approaches to evaluate and set the α-T dietary requirement are discussed. Finally, the possible role of α-T supplements in delay of chronic diseases and the evaluation of vitamin E safety are considered.

Read More

Reported evidence of vitamin E protection against cataract and glaucoma

Masaki Tanito

Free Radic Biol Med . 2021 Oct 22;177:100-119. doi: 10.1016/j.freeradbiomed.2021.10.027. Online ahead of print.

Abstract

Cataract and glaucoma are the major causes of severe visual loss and blindness in older adults. This review article describes the currently available basic and clinical evidence regarding vitamin E protection against these eye diseases in the chronologic order of the publications. Experimental evidence has suggested both that oxidative stress due to the accumulation of free radicals plays a role in the pathogenesis of cataracts and glaucoma and that the process can be prevented or ameliorated by vitamin E. The results of observational studies have been inconsistent regarding the association between blood vitamin E levels and the risk of age-related cataract or glaucoma. Despite the encouraging effects of vitamin E from case series, case-control studies, and cross-sectional studies in humans, the effects on cataract formation and/or progression have not been consistent among prospective and randomized control studies; few randomized control studies have tested the effects of supplemental vitamin E on glaucoma development or progression. Given the high prevalence of cataract and glaucoma in the elderly population, even a modest reduction in the risk for these eye diseases would potentially have a substantial public health impact; however, the potential benefits of vitamin E on cataract or glaucoma remain inconclusive and need to be carefully considered.

Read More

What is topical vitamin E used for?

Vitamin E is an essential vitamin that should be consumed in the diet in adequate amounts to promote optimal health outcomes.  However, it is also used in some cosmetics and topical skin care products.  What is topical vitamin E, what is it used for, and are there any side effects?

Read More

Absorption, transportation, and distribution of vitamin E homologs

Chikako Kiyose

Free Radic Biol Med . 2021 Oct 20;S0891-5849(21)00766-8. doi: 10.1016/j.freeradbiomed.2021.10.016. Online ahead of print.

Abstract

Vitamin E has eight different naturally occurring forms: four tocopherols and four tocotrienols. Because α-tocopherol has three asymmetric carbons, both natural α-tocopherol (RRR-α-tocopherol) and synthetic α-tocopherol (all-rac-α-tocopherol) are utilized in both pharmaceutical products and food additives. Therefore, determining the distribution of vitamin E in the body is very important. With regard to absorption, and transportation of vitamin E, it is suggested that the pathways mediated by three proteins (CD36, SR-BI, and NPC1L1) as well as passive diffusion affect absorption of vitamin E. Vitamin E homologs are mainly transported by very low-density lipoprotein (VLDL) with the α-tocopherol being recognized by the α-tocopherol transfer protein in liver. However, it is also suggested that chylomicrons (CMs) and high-density lipoprotein (HDL) are involved in transportation of vitamin E homologs from the small intestine to each section of peripheral tissue. In particular, it is speculated that vitamin E homologs transportation by CMs and HDL from enterocytes to peripheral tissues such as adipose tissue greatly affects the distribution of vitamin E homologs, excluding α-tocopherol. However, how lipoprotein lipase affects the incorporation of vitamin E homologs containing lipoprotein into peripheral tissues is unclear. Whether there is biodiscrimination when vitamin E homologs are incorporated into peripheral tissues from lipoprotein is an interesting question. It is likely that future research will reveal how individual vitamin E homologs are incorporated into peripheral tissue, especially the brain, adipose tissue, and skin.

Read More

Involvement of PD-L1-mediated Tumor Intrinsic Signaling and Immune Suppression in Tumorigenic Effect of α-Tocopherol

Zhenou Sun, Shutao Yin, Chong Zhao, Li Hong Fan, Hongbo Hu

Carcinogenesis . 2021 Oct 17;bgab096. doi: 10.1093/carcin/bgab096. Online ahead of print.

Abstract

Numerous studies have shown that the different isoforms vitamin E have distinct activity on carcinogenesis. α-Tocopherol (α-T), the most abundant vitamin E in certain types of food and animal tissues, has demonstrated a cancer-promoting effect in a number of human clinical trials and pre-clinical studies, whereas the γ- and δ- forms of Tocopherols and Tocotrienols have exhibited significant anticancer effect in various pre-clinical studies. However, the mechanisms underlying the tumorigenic effect of α-T have not yet been fully understood. In the present study, we found that α-T was able to activate Programmed death-ligand 1 (PD-L1)-mediated tumor-intrinsic signaling and immune suppression via JAK/STAT3-dependent transcriptional and ERK-dependent posttranscriptional mechanism. In line with PD-L1 induction, α-T treatment increased cancer cell viability in vitro and promoted tumor growth in LLC xenograft mouse model. The findings of the present study for the first time provided evidence that PD-L1-mediated tumor-intrinsic and immune escape mechanism contributed to the tumorigenic effect of α-T.

Read More

Cytotoxicity, cellular uptake, and metabolism to short-chain metabolites of 11′-α-tocomonoenol is similar to RRR-α-tocopherol in HepG2 cells

Alexander Montoya-Arroyo, Tanja Wagner, Nadine Sus, Marco Müller, Alexander Kröpfl, Walter Vetter, Jan Frank

Free Radic Biol Med . 2021 Oct 16;S0891-5849(21)00768-1. doi: 10.1016/j.freeradbiomed.2021.10.018. Online ahead of print.

Abstract

Contrary to the major vitamin E congener α-tocopherol, which carries a saturated sidechain, and α-tocotrienol, with a threefold unsaturated sidechain, little is known about the intracellular fate of α-tocomonoenol, a minor vitamin E derivative with a single double bond in C11′-position of the sidechain. We hypothesized that, due to structural similarities, the uptake and metabolism of α-tocomonoenol will resemble that of α-tocopherol. Cytotoxicity, cellular uptake of α-tocomonoenol, α-tocopherol and α-tocotrienol and conversion into the short-chain metabolites αCEHC and αCMBHC were studied in HepG2 cells. α-Tocomonoenol did not show significant effects on cell viability and its uptake was similar to that observed for α-tocopherol and significantly lower than for α-tocotrienol. α-Tocomonoenol was mainly metabolized to αCMBHC in liver cells, but to a lower extent than α-tocotrienol, while α-tocopherol was not metabolized in quantifiable amounts at all. In summary, the similarities in the cytotoxicity, uptake and metabolism of α-tocomonoenol and α-tocopherol suggest that this minor vitamin E congener deserves more attention in future research with regard to its potential vitamin E activity.

Read More

Vitamin E supplementation in inflammatory skin diseases

Enzo Berardesca, Norma Cameli

Dermatol Ther . 2021 Oct 16;e15160. doi: 10.1111/dth.15160. Online ahead of print.

Abstract

Vitamin E is a powerful lipophilic antioxidant that protects membranes from lipid peroxidation, and consequently, oxidative damage. Oxidative stress plays a role in the development of neurodegenerative diseases. Vitamin E supplementation is recommended in patients with vitamin E deficiency due to fat malabsorption. The addition of vitamin E to the diet slows Alzheimer’s disease progression and protects older patients against respiratory infections. Recent studies also point to the involvement of oxidative stress in the pathology of immune-mediated skin diseases, such as atopic dermatitis and psoriasis. We reviewed the available clinical trials that investigated the role of vitamin E supplementation in preventing and treating atopic dermatitis and psoriasis. Data from these studies point to a positive role of vitamin E supplementation in these diseases. Still, due to limitations in study design, further evidence is needed to reach a definite conclusion.

Read More

α-tocopherol, a slow-binding inhibitor of acetylcholinesterase

Irina Zueva, Sofya Lushchekina, Polina Shulnikova, Oksana Lenina, Konstantin Petrov, Elena Molochkina, Patrick Masson

Chem Biol Interact . 2021 Oct 1;348:109646. doi: 10.1016/j.cbi.2021.109646. Epub 2021 Sep 8.

Abstract

Acetylcholinesterase (AChE) is reversibly inhibited by α-tocopherol (α-T). Steady state kinetic analysis shows that α-T is a mixed slow-binding inhibitor of type A of human enzyme (Kci = 0.49 μM; Kui = 1.6 μM) with a residence time of 2 min on target. Molecular dynamics (MD) simulations support this mechanism, and indicate that α-T first forms multiple non-specific interactions with AChE surface near the gorge entrance, then binds to the peripheral side with alkylene chain slowly sliding down the gorge, inducing no significant conformational change. α-T slightly modulates the progressive inhibition of AChE by the cyclic organophosphorus, cresyl saligenylphosphate, accelerating the fast pseudo-first order process of phosphorylation. A moderate accelerating effect of α-T on phosphorylation by paraoxon was also observed after pre-incubation of AChE in the presence of α-T. This accelerating effect of α-T on ex vivo paraoxon-induced diaphragm muscle weakness was also observed. The effect of α-T on AChE phosphylation was interpreted in light of molecular modeling results. From all results it is clear that α-T does not protect AChE against phosphylation by organophosphorus.

Read More

Lipophilic Vitamin E Diffusion through Bicontinuous Microemulsions

Dai Kato, Johtaro Yamamoto, Yoshio Suzuki, Tomoyuki Kamata, Hinako Hashimoto, Masashi Kunitake

Anal Chem . 2021 Oct 13. doi: 10.1021/acs.analchem.1c03174. Online ahead of print.

Abstract

We studied the diffusion properties of lipophilic vitamin E (VE) through bicontinuous microemulsions (BME) using both electrochemical and fluorescence correlation spectroscopy (FCS) measurements. We investigated the effect of different composition ratios of micro-water and micro-oil phases in BMEs (W/OBME). When we employed the BME with a lower W/OBME value of 40/60 (oil-rich BME) as an electrolyte solution, we obtained a larger current response from VE at a fluorinated nanocarbon film electrode. Further voltammetric studies revealed that a higher VE diffusion coefficient was observed in the oil-rich BME. The FCS results also exhibited faster diffusion through the oil-rich BME, which played a significant role in accelerating the VE diffusion probably due to the widening of the micro-oil phase pathway in the BME. Moreover, the effect of increasing the VE diffusion was pronounced at the interface between the electrode surface and the BME solution. These results indicate that controlling the conditions of the BME as the measurement electrolyte is very effective for achieving superior electrochemical measurements in a BME.

Read More