Vitamin E, Deficiency

Kemnic TR, Coleman M

StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2018-. 2018 Jul 24.

Excerpt

Vitamin E is all the following eight compounds alpha, beta, gamma, and delta-tocopherol and alpha, beta, gamma, and delta-tocotrienol. Alpha-tocopherol is the only compound of the eight that are known to meet human dietary needs. All of the vitamin E forms are absorbed in the small intestine, and then the liver metabolizes only alpha-tocopherol. The liver then removes and excretes the remaining vitamin E forms. Vitamin E deficiency is extremely rare in humans as it is unlikely caused by a diet consisting of low vitamin E. Rather, it tends to be caused by irregularities in dietary fat absorption or metabolism. Vitamin E is a lipid-soluble nutrient. Vitamin E may have a role in reducing atherosclerosis and lowering rates of ischemic heart disease. Premature infants have low vitamin E reserves due to vitamin E only able to cross the placenta in small amounts.

Read More

Weight loss program is associated with decrease α-tocopherol status in obese adults

Hamułka J, Górnicka M, Sulich A, Frąckiewicz J

Clin Nutr. 2018 Jul 20. pii: S0261-5614(18)31213-5. doi: 10.1016/j.clnu.2018.07.011. [Epub ahead of print]

Abstract

BACKGROUND & AIMS:

Studies on changes in plasma α-tocopherol levels during body fat reduction in obese persons are not clear. The aim of the present study was to assess factors associated with α-tocopherol status in obese people and to examine changes in α-tocopherolstatus after a 6-week AntioxObesity weight loss program.

METHODS:

The study was conducted in 60 overweight or obese adults, aged 18-54 years old. Food intake data were collected using the 3-day record method and a semi-quantitative food-frequency questionnaire. Anthropometric measurements included: height (H), body weight, waist circumference (WC) and hip circumference (HC), body composition: fat mass (FM) and fat-free mass (FFM), subcutaneous fat (SF) and visceral fat (VF). Lipid profile, α-tocopherol concentration, glutathione peroxidase (GPx) activity, total antioxidant capacity (TAC) in plasma and superoxide dismutase (SOD) activity in erythrocytes were determined.

RESULTS:

Energy, fat, and carbohydrate intakes decreased significantly in all subjects (P < 0.001). Body weight, WC, body mass index (BMI), waist-to height ratio (WHtR), and FM, VF and SF decreased significantly during the 6 weeks in all subjects. Plasma α-tocopherolsignificantly decreased during the program (P = 0.006). No changes were observed for SOD activity, but GPx activity and TAC decreased significantly (P = 0.001; P = 0,023, respectively). Plasma α-tocopherol concentration after 6 weeks of the AntioxObesity program was strongly associated with baseline plasma α-tocopherol, changes in TC, VF and FM. Low α-tocopherol status (<20 μmol/L) was found in 78% of the women and 68% of the men, after 6 weeks of the AntioxObesity program. Men were characterized by a greater decrease in weight, BMI, WC, FM, VF, SF and TAC compared to women.

CONCLUSIONS:

A 6-week weight loss program lowered α-tocopherol status in overweight and obese people. Low baseline α-tocopherolstatus and adiposity in obese adults negatively affected α-tocopherol status after 6 weeks weight loss program. These results, coupled with excessive weight and low α-tocopherol intake, led to the finding that there was an increased risk of oxidative stress diseases in adults on a reduced diet. Long-term dietary restriction program for obese patients should be monitored to avoid α-tocopherol deficiency, and take into account higher dietary α-tocopherol requirements for obese people.

Read More

11 Amazing Health Benefits of Vitamin E

Vitamin E is said to combat factors that contribute to neurological diseases as well. This is why many physicians and beauticians emphasize that your diet should have an adequate amount of vitamin E.

Read More

Vitamin E alleviates phoxim-induced toxic effects on intestinal oxidative stress, barrier function, and morphological changes in rats

Sun Y, Zhang J, Song W, Shan A

Environ Sci Pollut Res Int. 2018 Jul 12. doi: 10.1007/s11356-018-2666-y. [Epub ahead of print]

Abstract

Phoxim is an organic phosphorus pesticide that remains easily in the environment, such as human food and animal feed. The objective of this study was to explore the effect of vitamin E on phoxim-induced oxidative stress in the intestinal tissues of Sprague-Dawley (SD) rats. Forty-eight Sprague-Dawley rats were randomly assigned to a control group and three treatment groups: treatment group 1 (phoxim: 20 mg/kg·BW), treatment group 2 (phoxim: 180 mg/kg·BW), and treatment 3 (vitamin E + phoxim: 200 mg/kg·BW + 180 mg/kg·BW). Phoxim was given by gavage administration once a day for 28 days. The results showed that phoxim significantly reduced jejunum villus height in rats (P < 0.05), and decreased the mRNA expression of junction protein genes of rats, including Occlidin and Claudin-4 (P < 0.05). Phoxim reduced GSH content and T-AOC level in the intestinal mucosa (P < 0.05). The mRNA expression levels of oxidative stress-related genes (Nrf2 and GPx2) were decreased. The mRNA expression of SOD was significantly increased. In addition, phoxim increased the level of interleukin-6 (IL-6) in jejunum mucosa and significantly reduced the level of IL-8 in ileum mucosas, while significantly increased TNF-α secretion. The mRNA expression levels of IL-1β, IL-6, and IL-8 were significantly decreased, and mRNA expression of TNF-α was significantly increased (P < 0.05). Phoxim also increased the DNA expression of total cecal bacteria and Escherichia coli, inhibited the DNA expression of Lactobacillus and destroyed the intestinal barrier. Two hundred milligrams per kilogram BW vitamin E reduced the effect of phoxim on intestinal structure, alleviated the oxidative stress in intestinal tissue, and decreased the level of TNF-α. The mRNA expressions of antioxidative stress genes (SOD and GPx2) were significantly increased. The DNA expression level of Lactobacillus was significantly increased. In conclusion, vitamin E helped reduce the toxicity of organophosphate pesticides, such as phoxim on rat intestinal tissue.

Read More

Cellular Uptake and Bioavailability of Tocotrienol-Rich Fraction in SIRT1-Inhibited Human Diploid Fibroblasts

Jaafar F, Abdullah A, Makpol S

Sci Rep. 2018 Jul 11;8(1):10471. doi: 10.1038/s41598-018-28708-z.

Abstract

Tocotrienol-rich fraction (TRF) is palm vitamin E that consists of tocopherol and tocotrienol. TRF is involved in important cellular regulation including delaying cellular senescence. A key regulator of cellular senescence, Sirtuin 1 (SIRT1) is involved in lipid metabolism. Thus, SIRT1 may regulate vitamin E transportation and bioavailability at cellular level. This study aimed to determine the role of SIRT1 on cellular uptake and bioavailability of TRF in human diploid fibroblasts (HDFs). SIRT1 gene in young HDFs was silenced by small interference RNA (siRNA) while SIRT1 activity was inhibited by sirtinol. TRF treatment was given for 24 h before or after SIRT1 inhibition. Cellular concentration of TRF isomers was determined according to the time points of before and after TRF treatment at 0, 24, 48, 72 and 96 h. Our results showed that all tocotrienol isomers were significantly taken up by HDFs after 24 h of TRF treatment and decreased 24 h after TRF treatment was terminated but remained in the cell up to 72 h. The uptake of α-tocopherol, α-tocotrienol and β-tocotrienol was significantly higher in senescent cells as compared to young HDFs indicating higher requirement for vitamin E in senescent cells. Inhibition of SIRT1 gene increased the uptake of all tocotrienol isomers but not α-tocopherol. However, SIRT1 inhibition at protein level decreased tocotrienol concentration. In conclusion, SIRT1 may regulate the cellular uptake and bioavailability of tocotrienol isomers in human diploid fibroblast cells while a similar regulation was not shown for α-tocopherol.

Read More

Angiogenesis and Full-Thickness Wound Healing Efficiency of a Copper-Doped Borate Bioactive Glass/Poly(lactic- co-glycolic acid) Dressing Loaded with Vitamin E in Vivo and in Vitro

Hu H, Tang Y, Pang L, Lin C, Huang W, Wang D, Jia W

Send to ACS Appl Mater Interfaces. 2018 Jul 11;10(27):22939-22950. doi: 10.1021/acsami.8b04903. Epub 2018 Jun 28.

Abstract

There is an urgent demand for wound healing biomaterials because of the increasing frequency of traffic accidents, industrial contingencies, and natural disasters. Borate bioactive glass has potential applications in bone tissue engineering and wound healing; however, its uncontrolled release runs a high risk of rapid degradation and transient biotoxicity. In this study, a novel organic-inorganic dressing of copper-doped borate bioactive glass/poly(lactic- co-glycolic acid) loaded with vitamin E (0-3.0 wt % vitamin E) was fabricated to evaluate its efficiency for angiogenesis in cells and full-thickness skin wounds healing in rodents. In vitro results showed the dressing was an ideal interface for the organic-inorganic mixture and a controlled release system for Cu2+ and vitamin E. Cell culture suggested the ionic dissolution product of the copper-doped and vitamin E-loaded dressing showed the best migration, tubule formation, and vascular endothelial growth factor (VEGF) secretion in human umbilical vein endothelial cells (HUVECs) and higher expression levels of angiogenesis-related genes in fibroblasts in vitro. Furthermore, this dressing also suggested a significant improvement in the epithelialization of wound closure and an obvious enhancement in vessel sprouting and collagen remodeling in vivo. These results indicate that the copper-doped borate bioactive glass/poly(lactic- co-glycolic acid) dressing loaded with vitamin E is effective in stimulating angiogenesis and healing full-thickness skin defects and is a promising wound dressing in the reconstruction of full-thickness skin injury.

Read More

Impacts of selenium and vitamin E supplementation on mRNA of heat shock proteins, selenoproteins and antioxidants in broilers exposed to high temperature.

Kumbhar S, Khan AZ, Parveen F, Nizamani ZA, Siyal FA, El-Hack MEA, Gan F, Liu Y, Hamid M, Nido SA, Huang K

AMB Express. 2018 Jul 10;8(1):112. doi: 10.1186/s13568-018-0641-0.

Abstract

The study was carried out to investigate the effect of dietary selenium (Se) and vitamin E (VE) supplementation on mRNA level of heat shock proteins, selenoproteins, and antioxidant enzyme activities in the breast meat of broilers under summer heat stress conditions. A total of 200 male broilers (Ross 308) of 1 day age were randomly separated into 4 groups in a complete randomized design and were given a basal diet (Control, 0.08 mg Se/kg diet) or basal diet supplemented with VE (250 mg/kg VE), sodium selenite (0.2 mg/kg Se), or Se + VE (0.2 mg/kg Se + 250 mg/kg VE) to investigate the expression of key antioxidant and heat shock protein (HSP) genes under high temperature stress. Dietary Se, VE and Se + VE significantly enhanced the activities and mRNA levels of catalase as well as superoxide dismutase (SOD) but decreased the mRNA levels of HSP70 and HSP90. Se alone or combined with VE increased the concentration of selenoprotein P and selenoproteins mRNA level and decreased the expression of HSP60. In addition, Se and Se + VE significantly enhanced the glutathione peroxidase (GPx) activity and the expression of GPx1 and GPx4 in breast muscle tissues. It is noteworthy that all the treatments significantly decreased malondialdehyde (MDA) level in the breast meat. Overall results showed that Se in combination with VE has maximal effects to mitigate heat stress. Based on given results it can be recommended that Se + VE are a suitable dietary supplement for broilers to ameliorate the negative effects of summer heat stress conditions.

Read More

Vitamin E-stabilized UHMWPE: Biological response on human osteoblasts to wear debris

Galliera E, Ragone V, Marazzi MG, Selmin F, Banci L, Romanelli MMC

Clin Chim Acta. 2018 Jul 10. pii: S0009-8981(18)30348-6. doi: 10.1016/j.cca.2018.07.012. [Epub ahead of print]

Abstract

UHMWPE doped with vitamin E was introduced to provide oxidation resistance upon sterilization, without affecting UHMWPE’s mechanical properties. Particle-induced macrophage activation leads to periprosthetic bone resorption, requiring total joint replacements. During osteolysis, osteoblasts produce osteoimmunological factors such as RANKL and OPG, and the inhibitors of the Wnt pathway DKK-1 and Sclerostin. This study investigated in vitro how vitamin E-blended-UHMWPE wear debris might affect osteoblast-mediated osteolysis and the production of RANKL, OPG, Sclerostin and DKK-1, compared to conventional UHMWPE wear debris. Human osteoblastic SaOS2 cells were incubated with wear particles from Vitamin E doped and conventional UHMWPE and the gene expression and protein production of IL-6, RANKL, OPG, DKK-1, and Sclerostin was evaluated, RANKL, a bone erosion marker, was reduced, while OPG, a bone protective marker, were increased by the vitamin E-blended UHMWPE compared to conventional UHMWPE. Vitamin E doped UHMWPE reduced Sclerostin level, and partially affected DKK-1 production, thereby protecting against bone erosion. In conclusion, Vitamin E-blended UHMWPE induced an osteoimmunological response in bone cells that had positive effects on the osteolysis induced by wear debris, reducing aseptic loosening of the implants. In conclusion, this is the first study showing that Vitamin E-blended UHMWPE induced an osteoimmunological response in bone cells that positively affect the osteolysis induced by wear debris, thereby reducing the aseptic loosening of the implants.

Read More